Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) hệ phương trình có nghiệm thỏa mãn 3x-7y=19
=> x,y là nghiệm của hệ phương trình \(\hept{\begin{cases}x-3y=5\left(1\right)\\3x-7y=19\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow3x-9y=15\Leftrightarrow3x=15+9y\)
thay 3x=15+9y zô (4) ta đc
\(15+9y-7y=19\)
=>\(2y=4=>y=2\)
\(=>x-3.2=5=>x=11\)
thay x=11 , y=6 ta có
\(4.11+2=13.m-32\)
=> m=6
b)\(\hept{\begin{cases}x-3y=5\left(3\right)\\4x+y=13m-32\left(4\right)\end{cases}}\)
\(\left(3\right)\Leftrightarrow4x-12y=20\Leftrightarrow4x=20+12y\)
thay zô (4) , rồi làm biến đổi như câu a) nhá
xong => y=m-4
=> x=5+3y
=> x=5+3(m-4)=3m-7
\(\hept{\begin{cases}x>2\\y< 3\end{cases}\Leftrightarrow\hept{\begin{cases}3m-7>2\\m-4< 3\end{cases}\Leftrightarrow}\hept{\begin{cases}m>3\\m< 7\end{cases}\Leftrightarrow}3< m< 7}\)
c) Thay x=3m-7 ; y=m-4 ta có
\(S=\left(3m-7\right)^2+6\left(m-4\right)+2030\)
\(=9m^2-42m+49+6m-24+2030\)
\(=9m^2-36m+2055=9m^2-2.3m.6+36+2019\)
\(=\left(3m-6\right)^2+2019\ge2019\forall m\)
dấu = xảy ra khi 3m-6=0 => m=2
zậy ...
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
Câu nào biết thì mink làm, thông cảm !
Bài 1:
1) Cho \(a=1\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)
2) Cho \(a=\sqrt{3}\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)
Bữa sau làm tiếp
1)
\(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x+3y=12\\2x+3y=m\end{matrix}\right.\)
trừ 2 vế của pt cho nhau ta tìm được
\(\left\{{}\begin{matrix}x=12-m\\y=m-8\end{matrix}\right.\)
để \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< 12\\m< 8\end{matrix}\right.\Rightarrow}m< 8}\)
b:
Sửa đê; x^2+y^2=1
=>3x=m-my và x(m-1)+2y=m-1
=>x=-1/3my+1/3m và (m-1)(-1/3my+1/3m)+2y=m-1
=>x=-1/3my+1/3m và \(y\cdot\dfrac{-1}{3}m^2+\dfrac{1}{3}m^2+\dfrac{1}{3}my-\dfrac{1}{3}m+2y=m-1\)
=>\(\left\{{}\begin{matrix}x=\dfrac{-1}{3}my+\dfrac{1}{3}m\\y\left(-\dfrac{1}{3}m^2+\dfrac{1}{3}m+2\right)=m-1-\dfrac{1}{3}m^2+\dfrac{1}{3}m=-\dfrac{1}{3}m^2+\dfrac{4}{3}m-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\cdot\left(-m^2+m+6\right)=-m^2+4m-3\\x=-\dfrac{1}{3}my+\dfrac{1}{3}m\end{matrix}\right.\)
=>y*(m-3)(m-2)=(m-3)(m-1) và x=-1/3my+1/3m
Nếu m=3 thì hệ có vô số nghiệm
nếu m=2 thì hệ vô nghiệm
Nếu m<>3; m<>2 thì hệ có nghiệm duy nhất là:
\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m-2}\\x=-\dfrac{1}{3}\cdot\dfrac{m^2-m}{m-2}+\dfrac{m}{3}=\dfrac{-m^2+m}{3m-6}+\dfrac{m}{3}=\dfrac{-m^2+m+m^2-2m}{3\left(m-2\right)}=\dfrac{-m}{3\left(m-2\right)}\end{matrix}\right.\)
x^2+y^2=1
=>(m-1/m-2)^2++(-m/3m-6)^2=1
=>\(\dfrac{\left(m-1\right)^2}{\left(m-2\right)^2}+\dfrac{m^2}{9\left(m-2\right)^2}=1\)
=>9(m-1)^2+m^2=9(m-2)^2
=>9m^2-18m+9+m^2=9m^2-36m+36
=>m^2-18m+9=-36m+36
=>m^2+18m-27=0
=>\(m=-9\pm6\sqrt{3}\)