\(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\) 

a)giải...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2019

a,thay m giải như bình thường

b,đề hệ có no duy nhát thì \(\frac{a}{a'}\ne\frac{b}{b'}\)

hay\(\frac{m-1}{m}\ne1\)

=>đk của m rồi tìm x và y theo m rồi cho tmđk đề bài r đối chiếu với đk

=>m

a. Thay m = 1 vào hệ ta dc: \(\hept{\begin{cases}x-y=1\\\frac{x}{2}+\frac{y}{3}=8\end{cases}}\) <=> \(\hept{\begin{cases}x-y=1\\3x+2y=48\end{cases}}\) <=> \(\hept{\begin{cases}3x-3y=3\\3x+2y=48\end{cases}}\)<=> \(\hept{\begin{cases}x-y=1\\-5y=-45\end{cases}}\)<=> \(\hept{\begin{cases}x=y+1=9+1=10\\y=9\end{cases}}\)

Vậy no cua hpt khi m = 1 là: (10;9)

b. Xét hệ: \(\hept{\begin{cases}mx-y=1\\3x+2y=48\end{cases}}\) <=> \(\hept{\begin{cases}2mx-2y=2\\3x+2y=48\end{cases}}\)<=> \(\hept{\begin{cases}\left(2m+3\right)x=50\left(1\right)\\3x+2y=48\end{cases}}\)

Hệ pt vô nghiệm <=> (1) vô nghiệm 2m + 3 = 0 <=> m = \(-\frac{3}{2}\)

Vậy khi m = -3/2 thì hệ pt vô nghiệm

4 tháng 2 2021

jhyfhregrjhesdftruiejxfhrjehxgmjfd;j03169543256545449526u4tnkuyfnikuyf42b 4r 6e524brd62v4utq7w8e9r96f5d4s1d323g5t5esd232df2f5e2s2sd

9 tháng 7 2017

ai k mình k lại nhưng phải lên điểm mình tích gấp đôi

26 tháng 3 2019

Xét hệ phương trình :\(\hept{\begin{cases}mx-y=1\\\frac{x}{2}-\frac{y}{3}=334\end{cases}}\)

a, Khi m = 1 ta có hệ phương trình : \(\hept{\begin{cases}x-y=1\\3x-2y=2004\end{cases}\Leftrightarrow\hept{\begin{cases}x=2002\\y=2001\end{cases}}}\)

b, \(\hept{\begin{cases}mx-y=1\\\frac{x}{2}-\frac{y}{3}=334\end{cases}\Leftrightarrow\hept{\begin{cases}mx-y=1\\3x-2y=2004\end{cases}}}\)

Hệ phương trình vô nghiệm khi \(\frac{m}{3}=\frac{1}{2}\ne\frac{1}{2004}\Leftrightarrow m=\frac{3}{2}\)

Tìm các giá trị nguyên x,y thõa mãn : \(y^2=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)Giải :Do \(y^2\ge0\) =>  \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\ge0\)                       <=> \(\left(x^2+3x\right)\left(x^2+3x+2\right)\ge0\)Xảy ra hai trường hợp \(\left(I\right)\hept{\begin{cases}x^2+3x\ge0\\x^2+3x+2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\left(x+3\right)\ge0\\x\left(x+3\right)\ge-2\end{cases}}\Rightarrow...
Đọc tiếp

Tìm các giá trị nguyên x,y thõa mãn : \(y^2=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

Giải :

Do \(y^2\ge0\) =>  \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\ge0\)

                       <=> \(\left(x^2+3x\right)\left(x^2+3x+2\right)\ge0\)

Xảy ra hai trường hợp 

\(\left(I\right)\hept{\begin{cases}x^2+3x\ge0\\x^2+3x+2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\left(x+3\right)\ge0\\x\left(x+3\right)\ge-2\end{cases}}\Rightarrow x\left(x+3\right)\ge0\) 

\(\left(II\right)\hept{\begin{cases}x^2+3x\le0\\x^2+3x+2\le0\end{cases}\Rightarrow\hept{\begin{cases}x\left(x+3\right)\le0\\x\left(x+3\right)\le-2\end{cases}}}\Rightarrow x\left(x+3\right)\le-2\)

\(\Rightarrow\orbr{\begin{cases}x\left(x+3\right)\ge0\\x\left(x+3\right)\le-2\end{cases}}\)

+)  Với \(x\left(x+3\right)\ge0\)

=> \(\hept{\begin{cases}x\ge0\\x\ge-3\end{cases}}\)           hoặc                 \(\hept{\begin{cases}x\le0\\x\le-3\end{cases}}\)

=>  \(\orbr{\begin{cases}x\ge0\\x\le-3\end{cases}}\)

+)  Với  \(x\left(x+3\right)\le-2\)=> \(x^2+3x+2\le0\)  =>  \(\left(x+1\right)\left(x+2\right)\le0\)

=> \(\hept{\begin{cases}x+1\ge0\\x+2\le0\end{cases}}\)                          hoặc                \(\hept{\begin{cases}x+1\le0\\x+2\ge0\end{cases}}\)

=>  \(\hept{\begin{cases}x\ge-1\\x\le-2\end{cases}}\left(removed\right)\)     hoặc                \(\hept{\begin{cases}x\le-1\\x\ge-2\end{cases}}\Rightarrow-2\le x\le-1\Rightarrow x\in\left\{-2;-1\right\}\)

Vậy với \(y^2\ge0\) thì  \(\orbr{\begin{cases}x\ge0\\x\le-3\end{cases}}\) hoặc  \(\orbr{\begin{cases}x=-2\\x=-1\end{cases}}\)

Đẳng thức xảy ra <=> dấu bằng của các trường hợp được xét trên xảy ra    hay   

\(\hept{\begin{cases}y=0\\x\in\left\{0;-1;-2;-3\right\}\end{cases}}\)

 

P/s : Mấy pác xem hộ em :) , sai chỗ nào chỉ em với :V 

0