K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2017

dùng pp thế đỡ biện luận nhiều

từ (2)=> y=(16-mx)/2 thế vào (1)

\(3x-m\left(\frac{16-mx}{2}\right)=-9\Leftrightarrow\left(m^2+6\right)x=16m-18\)

\(x=\frac{16m-18}{m^2+6}\)\(\Rightarrow y=16-\frac{m\left(16m-18\right)}{m^2+6}=\frac{18m+16.6}{m^2+6}\)

a) vì m^2+6 khác 0 mọi m => hệ có nghiệm duy nhất với mọi m

b) 

\(\hept{\begin{cases}x=1,4\\y=6,6\end{cases}\Rightarrow m}\)

c) x+y=7=> \(\frac{16m-18+18m+16.6}{m^2+6}=7\Rightarrow m\)

4 tháng 5 2019

Để hệ có nghiệm với mọi x thuộc R thì

\(\frac{3}{m}=\frac{4}{2}=2\Rightarrow m=\frac{3}{2}\)

5 tháng 4 2020

a) *)Để hệ đã cho vô nghiệm \(\frac{a}{a'}=\frac{b}{b'}\ne\frac{c}{c'}\)

\(\Rightarrow\hept{\begin{cases}\frac{m+1}{5}=\frac{3}{-2}\\\frac{m+1}{5}\ne\frac{5}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}-2m-1=15\\3m+3\ne25\end{cases}\Leftrightarrow}\hept{\begin{cases}m=\frac{-17}{2}\\m\ne\frac{22}{3}\end{cases}}}\)

*) Để hệ có nghiệm duy nhất 

\(\Rightarrow\frac{a}{a'}\ne\frac{b}{b'}\Rightarrow\frac{m+1}{5}\ne\frac{3}{-2}\)

\(\Leftrightarrow-2m-2\ne15\)

\(\Leftrightarrow m\ne\frac{-17}{2}\)

b) Để hpt có nghiệm duy nhất \(\hept{\begin{cases}m\ne\frac{-17}{2}\\x+y=5\end{cases}}\)

Thay x=5-y vào hpt ta có \(\hept{\begin{cases}\left(m+1\right)\left(5-y\right)+3y=5\\5\left(5-y\right)-2y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)\left(5-y\right)+3y=5\\25-7y=3\end{cases}\Leftrightarrow\hept{\begin{cases}m=\frac{44}{13}\\y=\frac{22}{7}\end{cases}}}\)

Vậy \(m=\frac{44}{13}\)thỏa mãn điều kiện

4 tháng 2 2022

a) thay m=-1 ta được

\(\left\{{}\begin{matrix}x+y=0\\-x-y=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x+y=0\\x+y=0\end{matrix}\right.\)

=> hpt vô nghiệm

b)hpt trên có vô số nghiệm <=>\(\dfrac{1}{m}=\dfrac{-m}{-1}=\dfrac{0}{m+1}\)(vô lí)

   hpt trên chỉ có nghiệm duy nhất<=>\(\dfrac{1}{m}\ne\dfrac{-m}{-1}\)

                                                     <=>\(\dfrac{1}{m}\ne\dfrac{m}{1}\)

                                                     <=>\(m^2\ne1< =>m\ne\pm1\left(đpcm\right)\)

 

4 tháng 2 2022

câu a là HPT vô số nghiệm nha