
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ĐKXĐ: \(x\ne\pm1;-2\)
\(P=\left(\frac{x+1}{x-1}+\frac{2}{x^2-1}-\frac{x}{x+1}\right).\frac{x-1}{x+2}\)
\(=\left(\frac{\left(x+1\right)^2}{\left(x-1\right).\left(x+1\right)}+\frac{2}{\left(x-1\right).\left(x+1\right)}-\frac{x\left(x-1\right)}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)
\(=\left(\frac{x^2+2x+1}{\left(x-1\right).\left(x+1\right)}+\frac{2}{\left(x-1\right).\left(x+1\right)}-\frac{x^2-x}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)
\(=\left(\frac{x^2+2x+1+2-x^2+x}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)
\(=\frac{3x+3}{\left(x-1\right).\left(x+1\right)}.\frac{x-1}{x+2}=\frac{3.\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}.\frac{x-1}{x+2}=\frac{3}{x+2}\)
c. \(x^2-3x=0\Leftrightarrow x.\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Nếu x=0 thì: \(P=\frac{3}{x+2}=\frac{3}{0+2}=\frac{3}{2}\)
Nếu x=3 thì: \(P=\frac{3}{x+2}=\frac{3}{3+2}=\frac{3}{5}\)
d. Ta có: \(P=\frac{3}{x+2}\inℤ\)
Vì \(x\inℤ\Rightarrow x+2\inℤ\Rightarrow x+2\inƯ\left\{3\right\}\Rightarrow x+2\in\left\{\pm1;\pm3\right\}\Leftrightarrow x\in\left\{-3;-1;1;-5\right\}\)
Kết hợp ĐKXĐ \(\Rightarrow x\in\left\{-3;-5\right\}\)

d. Áp dụng BĐT Caushy Schwartz ta có:
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)
-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

a, Ta có :
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)
\(\Rightarrow(a+b)^2\ge4ab\)
\(\Rightarrow(a-b)^2\ge0(đpcm)\)
Mình để cho dấu lớn bằng để dễ hiểu nha bạn
c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)
Dấu " = "xảy ra khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)
Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm
Còn câu b và d bạn tự làm nhé
Chúc bạn học tốt
\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)
dấu ''='' xảy ra khi và chỉ khi a=b
\(b,x+\frac{1}{x}\ge2\)
\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)
\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)
dấu''='' xảy ra khi và chỉ khi x=1
áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên) =>GTNN là 2
dấu ''='' xay ra khi và chỉ khi x=1
\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)
=> GTNN là 1 tại x=2
\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)
vì -(x+2 )-6 <-6

\(2x^2+6x-8=0\)
<=> \(2x^2-2x+8x-8=0\)
<=> \(2x\left(x-1\right)+8\left(x-1\right)=0\)
<=> \(\left(2x+8\right)\left(x-1\right)=0\)
<=> \(\hept{\begin{cases}2x+8=0\\x-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-4\\x=1\end{cases}}\)
\(2x^2-x-1=0\)
<=> \(2x^2-2x+x-1=0\)
<=> \(2x\left(x-1\right)+\left(x-1\right)=0\)
<=> \(\left(2x+1\right)\left(x-1\right)=0\)
<=> \(\hept{\begin{cases}2x+1=0\\x-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)
\(4x^2-5x-9=0\)
<=> \(4x^2+4x-9x-9=0\)
<=> \(4x\left(x+1\right)-9\left(x+1\right)=0\)
<=> \(\left(4x-9\right)\left(x+1\right)=0\)
<=> \(\hept{\begin{cases}4x-9=0\\x+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{3}{2}\\x=-1\end{cases}}\)
học tốt
\(2x^2+6x-8=0\)
\(< =>2x^2-2x+8x-8=0\)
\(\Leftrightarrow2x\left(x-1\right)+8\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x+8\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x+8\right)\left(x-1\right)=0\)
\(\Leftrightarrow2x+8=0\)hoặc \(x-1=0\)
\(\Leftrightarrow x=-4\)hoặc \(x=1\)


\(3x\left(x-2\right)-x+2=0\)
\(\Leftrightarrow3x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}\)
\(B1:\)
\(3x\left(x-2\right)-\left(x-2\right)=0\)
\(\left(3x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-1=0\\x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}\)

\(x^2+x+1=0\Leftrightarrow x^2+2\cdot\frac{1}{2}\cdot x+\frac{1}{4}+\frac{3}{4}=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
Vậy phương trình không có nghiệm.