Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta AFK\) đều ( có AE vừa là đ/cao, đ/ph/giac)
\(\Rightarrow\left\{{}\begin{matrix}EF=EK\\\widehat{FAE}=\widehat{DAK}=\frac{1}{2}.\widehat{FAK}=60:2=30\end{matrix}\right.\) (1)
Lại có \(\widehat{EDK}=\widehat{FAE}=30\left(SLT\right)\)
Xét tgiac vuông DFE và DKE có
EF=EK, DE chung
\(\Rightarrow\Lambda DFE=\Delta DKE\left(gv-cgv\right)\)
\(\Rightarrow\widehat{EDF}=\widehat{EDK}=30\) (2)
(1) và (2) suy ra DAK=EDF suy ra DF//AK
a/ tgiac ABC vuông, áp dụng Pitago có:
\(BC^2=AC^2-AB^2=100-36=64\Rightarrow BC=8cm\)
Có AD là tia ph/giac \(\Rightarrow\frac{AB}{BD}=\frac{AC}{DC}\Rightarrow\frac{AB}{AC}=\frac{BD}{DC}=\frac{6}{10}=\frac{3}{5}\) \(\Rightarrow BD=\frac{3}{5}.DC\)
Mà BC=BD+DC=3/5DC+DC=8/5DC=8\(\Rightarrow DC=5cm\Rightarrow BD=3cm\)
a: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC và \(DE=\dfrac{1}{2}BC\)
DE//BC
mà H\(\in\)BC
nên DE//CH
Xét tứ giác DECH có DE//CH
nên DECH là hình thang
Ta có: ΔHAB vuông tại H
mà HD là đường trung tuyến
nên \(HD=DA=DB=\dfrac{AB}{2}\)
Ta có: ΔHAC vuông tại H
mà HE là đường trung tuyến
nên \(HE=AE=EC=\dfrac{AC}{2}\)
Xét ΔEAD và ΔEHD có
EA=EH
DA=DH
ED chung
Do đó: ΔEAD=ΔEHD
=>\(\widehat{EAD}=\widehat{EHD}=90^0\)
Xét tứ giác ADHE có
\(\widehat{DAE}+\widehat{DHE}=90^0+90^0=180^0\)
=>ADHE là tứ giác nội tiếp
b: Xét tứ giác AHCF có
E là trung điểm chung của AC và HF
=>AHCF là hình bình hành
Hình bình hành AHCF có \(\widehat{AHC}=90^0\)
nên AHCF là hình chữ nhật
F thuộc AD là sao ?