Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D N M x K H
Hình vẽ không được đẹp cho lắm :))
Từ kẻ đường thẳng tạo với cạnh AD một góc bằng 15 độ, cắt cạnh CD tại K. Từ đó dễ dàng suy ra góc KAN = 90 độ
Từ A lại kẻ đường thẳng vuông góc với CD tại H.
Xét tam giác AKD và tam giác AMB có AB = AD , góc BAM = góc KAD = 15 độ , góc ABM = góc ADK
=> tam giác AKD = tam giác AMB (g.c.g) => AM = AK
Áp dụng hệ thức về cạnh trong tam giác vuông, ta có : \(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{1}{AK^2}+\frac{1}{AN^2}=\frac{1}{AH^2}\)
Mà : \(AH=sin\widehat{ADH}.AD=sin60^o.AB=\frac{\sqrt{3}}{2}AB\)
\(\Rightarrow\frac{1}{AH^2}=\frac{4}{3AB^2}\)
Vậy \(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{4}{3AB^2}\)
m=2AO;n=2BO>>>m^2=4AO^2;n^2=4BO^2
Áp dụng hệ thức lượng trong tam giác vuông>>>1/AO^2+1/Bo^2=1/h^2
>>>1/4AO^2+1/4BO^2=1/4h^2>>>1/m^2+1/n^2=1/4h^2
bạn tự vẽ hình nha
qua A kẻ AI vuông góc với EF cắt BC tại I
áp dụng hệ thức lượng vào tam giác vuông AEI có AB là đường cao \(\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{AI^2}\) (1)
de dang chung minh duoc tam giac vuong ABI= tam giac vuong AFD(cgv-gnk)
\(\Rightarrow AF=AI\)
thay vao 1 ta co \(\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{AF^2}\left(DPCM\right)\)
qua A vẽ đường thẳng vuông góc với AE cắt CD tại G
xét tam giác ABE và tam giác ADG có
góc BAE = góc GAD ( vì cùng phụ với góc DAE )
AB=AD ( vì tứ giác ABCD là hình vuông )
góc ADG = góc ABE = 90 độ
=> tam giác ABE = tam giác ADG (g.c.g)
=> AE=AG => 1/AE^2=1/AG^2 (1)
mặt khác xét tam giác GAF vuông tại A có đường cao AD nên ta có
1/AG^2 + 1/AF^2 = 1/AD^2 (2)
từ (1) và (2) => 1/AD^2 = 1/AE^2 + 1/AF^2 mà AD = AB => 1/AB^2 = 1/AE^2 + 1/AF^2