\(\ne\)C,D).Đư...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2016

chtt sẽ có câu a nhé bạn
câu b thì bạn thay góc vào là ra
còn câu c thì =)) 

19 tháng 9 2018

olm-logo.png

11 tháng 9 2015

a.  Lấy điểm X trên tia đối của tia BC sao cho BX=DE, suy ra tam giác ABX bằng tam giác ADE (cạnh huyền, cạnh góc vuông). Do đó AX=AE. Xét tam giác vuông XAF, áp dụng hệ thức liên hệ giữa cạnh góc vuông và đường cao ta có \(\frac{1}{AX^2}+\frac{1}{AF^2}=\frac{1}{AB^2}\to\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AB^2}\)   không đổi. 

b.  Kẻ EH vuông góc với KF. Ta có \(\sin EKF\cdot\cos EFK+\sin EFK\cdot\cos EKF=\frac{EH\cdot FH}{KE\cdot EF}+\frac{KH\cdot EH}{KE\cdot EF}=\frac{EH\left(FH+KH\right)}{KE\cdot EF}=\frac{EH\cdot KF}{KE\cdot EF}\)
\(\frac{2S_{KEF}}{KE\cdot EF}=\frac{KA\cdot EF}{KE\cdot EF}=\frac{KA}{KE}=\sin\angle AEK=\cos\angle AKE.\)      (ĐPCM)

25 tháng 7 2017

cho hình thoi ABCD có canh .Qua C vẽ đường thẳng M cắt các tia đối của các tia BA và DA theo thứ tự E và F.CMR tổng 1/AE +1/AF không đổi với mọi vị trí nói trên cảu đường thẳng m

BÁC NÀO BK CHỈ MK VS

AH
Akai Haruma
Giáo viên
27 tháng 1 2019

Lời giải:

Do $ABCD$ là hình thoi nên:

\(\widehat{D_1}=\widehat{B_1}=180^0-\widehat{BAD}=30^0\) (2 góc trong cùng phía )

\(\widehat{F_1}=\widehat{BAE}=30^0\) (so le trong với \(AB\parallel CD\))

Do đó: \(\widehat{D_1}=\widehat{F_1}\Rightarrow \triangle ADF\) cân tại $A$, suy ra $AF=AD=a(1)$

Kẻ $AH$ vuông góc với $BC$

Ta có: \(\frac{AH}{AB}=\sin \widehat{ABH}=\sin \widehat{B_1}=\sin 30^0=\frac{1}{2}\)

\(\Rightarrow AH=\frac{AB}{2}=\frac{a}{2}\)

\(\widehat{AEH}=\widehat{EAB}+\widehat{B_1}=30^0+30^0=60^0\)

\(\Rightarrow \frac{AH}{AE}=\sin \widehat{AEH}=\sin 60^0=\frac{\sqrt{3}}{2}\)

\(\Rightarrow AE=\frac{2AH}{\sqrt{3}}=\frac{a}{\sqrt{3}}(2)\)

Từ (1);(2) suy ra \(\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{\frac{a^2}{3}}+\frac{1}{a^2}=\frac{4}{a^2}\) (đpcm)

AH
Akai Haruma
Giáo viên
27 tháng 1 2019

Hình vẽ:

Hệ thức lượng trong tam giác vuông

2 tháng 9 2018

A B C D E N F K G H P

Trên tia đối của DC lấy điểm P sao cho BE=DP

Dễ dàng c/m \(\Delta\)ABE = \(\Delta\)ADP (c.g.c) => AE=AP

Và ^BAE = ^DAP => ^BAE + ^DAE = ^DAP + ^DAE => ^PAE = 900

Ta có: ^EAN + ^PAN = ^PAE = 900. Mà ^EAN = 450 => ^EAN = ^PAN = 450

Xét \(\Delta\)ANE & \(\Delta\)ANP có: AE=AP; ^EAN = ^PAN; AN chung => \(\Delta\)ANE = \(\Delta\)ANP (c.g.c)

=> ^APN = ^AEN hay ^APD = ^AEH. Mà ^APD = ^AEB (Do \(\Delta\)ABE = \(\Delta\)ADP)

=> ^AEB = ^AEH => \(\Delta\)ABE = \(\Delta\)AHE (Cạnh huyền góc nhọn) => AB=AH

Và ^BAE = ^HAE hay ^BAG = ^HAG

=> \(\Delta\)AGB = \(\Delta\)AGH (c.g.c) => ^ABG = ^AHG. Tương tự: ^ADK = ^AHK 

=> ^ABG + ^ADK = ^AHG + ^AHK => ^KHG = 900 => \(\Delta\)KHG là tam giác vuông (đpcm).

=> HK2 + HG2 = KG2 . Lại có: HG=BG; HK=DK (Do \(\Delta\)AGB=\(\Delta\)AHG; \(\Delta\)AHK=\(\Delta\)ADK)

=> KG2 = DK2 + BG2 (đpcm).

3 tháng 11 2021

bạn có cách giải bài này chưa ạ , nếu có r thỉ mik với đc k ạ hihi