K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2018

2/ (Bạn tự vẽ hình giùm)

a/ Ta có DE // BC (gt)

=> \(\widehat{ADE}=\widehat{ABC}\)ở vị trí đồng vị

và \(\widehat{AED}=\widehat{ACB}\)ở vị trí đồng vị

Mà \(\widehat{ABC}=\widehat{ACB}\)(\(\Delta ABC\)cân tại A)

=> \(\widehat{ADE}=\widehat{AED}\)

=> \(\Delta ADE\)cân tại A

b/ Ta có \(\widehat{AED}=\widehat{CEG}\)(đối đỉnh)

và \(\widehat{ADE}=\widehat{BDF}\)(đối đỉnh)

và \(\widehat{ADE}=\widehat{AED}\)(cm câu a)

=> \(\widehat{CEG}=\widehat{BDF}\)(1)

Ta lại có \(\widehat{ECG}=90^o-\widehat{CEG}\)(\(\Delta CEG\)vuông tại G)

và \(\widehat{DBF}=90^o-\widehat{DFB}\)(\(\Delta BDF\)vuông tại F)

=> \(\widehat{ECG}=\widehat{DBF}\)(vì \(\widehat{CEG}=\widehat{BDF}\)) (2)

Ta tiếp tục có AB = AC (\(\Delta ABC\)cân tại A)

và AD = AE (\(\Delta ADE\)cân tại A)

=> AB - AD = AC - AE

=> DB = EC (3)

Từ (1), (2) và (3) => \(\Delta BFD=\Delta CGE\)(g. c. g) (đpcm)

c/ Ta có \(\widehat{ADE}=\widehat{AED}\)(cm câu a)

=> \(180^o-\widehat{ADE}=180^o-\widehat{AED}\)

=> \(\widehat{ADF}=\widehat{AEG}\)

và AD = AE (\(\Delta ADE\)cân tại A)

và DF = GE (\(\Delta BFD=\Delta CGE\))

=> \(\Delta ADF=\Delta AEG\)(c. g. c)

=> AF = AG (hai cạnh tương ứng) (đpcm)

d/ Ta có O là giao điểm của hai đường cao EI và DH của \(\Delta AGF\)

=> O là trực tâm của \(\Delta AGF\)

=> AO là đường cao thứ ba của \(\Delta AGF\)

=> AO \(\perp\)GF

Mà GF // BC

=> AO \(\perp\)BC

=> AO là đường cao của \(\Delta ABC\)

Mà \(\Delta ABC\)cân tại A

=> AO là đường phân giác của \(\Delta ABC\)

hay AO là tia phân giác của \(\widehat{BAC}\)(đpcm)

e/ Ta có DE \(\equiv\)BC

và AO \(\perp\)BC

=> AO \(\perp\)DE (đpcm)

phần \(AC\perp OG\)mình đang giải.

đề dài quá

đọc cx ngại oy ns j lm

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.a) Tính ACb) Kẻ BD là...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.

a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.

b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.

c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.

Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.

a) Tính AC

b) Kẻ BD là phân giác của \(\widehat{ABC}\) (D thuộc AC), kẻ DE vuông góc với BC ( E thuộc BC). Chứng minh DA = DE.

c) Chứng minh BD đi qua trung điểm của AE.

Câu 3: Cho góc xOy ( \(\widehat{xOy}\)không bằng 180) và tia Om là phân giác cuẩ góc xOy. Lấy điểm A thuộc Ox ; B thuộc Oy sao cho OA = OB. Gọi I là giao điểm của Om và AB.

a) Chứng minh tam giác AOI = tam giác BOI

b) Từ I kẻ IE thuộc Ox ( E thuộc Ox ) ; IF vuông góc với Oy ( F thuộc Oy ). Chứng minh tam giác EIF cân.

c) Lấy M trên Ox ( A nằm giữa O và M ) vẽ MN // Ab ( N thuộc Oy ), gọi H là trung điểm của MN =. Chứng minh 3 điểm O, I, H thẳng hàng.

  LÀm ơn giúp với mai mình thi rồi. Vẽ cả hình nhé. Cảm ơn ~

1
27 tháng 2 2019

cau 1 :

A B C E

Xet tam giac ABD va tam giac EBD co : BD chung

goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)

AB = BE (Gt)

=> tam giac ABD = tam giac EBD (c - g - c)

=> goc BAC = goc DEB (dn) 

ma goc BAC = 90 do tam giac ABC vuong tai A (gt)

=> goc DEB = 90 

=> DE _|_ BC (dn)

b, tam giac ABD = tam giac EBD (cau a)

=> AB = DE (dn)

AB = 6 (cm) => DE = 6 cm

DE _|_ BC => tam giac DEC vuong tai E 

=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)

=> CE2 = 10- 62

=> CE2 = 64

=> CE = 8 do CE > 0

24 tháng 5 2021

                                                                                      Giải

a, Vì ED \(\perp\)BC ( gt ) \(\Rightarrow\)\(\Delta\)DBE là tam giác vuông tại D

Xét \(\Delta\) vuông ABE và \(\Delta\)vuông DBE, có :

BE : cạnh chung 

góc ABE = góc DBE ( BE là tpg góc ABC ) 

\(\Rightarrow\)\(\Delta\)vuông ABE = \(\Delta\) vuông DBE ( cạnh huyền góc nhọn )

b, Vì \(\Delta\) ABE = \(\Delta\)DBE ( cmt )

\(\Rightarrow\)BA = BD ( 2 cạnh tương ứng ) \(\Rightarrow\)B nằm trên đtt của AD ( đ/l đảo )

          AE = DE ( 2 cạnh tương ứng )\(\Rightarrow\) E nằm trên đtt của AD ( đ/l đảo )

Từ 2 điều trên \(\Rightarrow\) BE là đtt của đoạn thẳng AD 

c, +, ta có : \(\Delta\)BAD cân tại B ( BA = BD )

\(\Rightarrow\)góc BAD = góc BDA ( t/c )

Vì AH \(\perp\) BC tại H ( gt ) \(\Rightarrow\) \(\Delta\) HAD vuông tại H 

Xét \(\Delta\)vuông HAD, có :

góc HAD + góc HDA ( hay góc BDA ) = 90o ( 2 góc phụ nhau )

Xét \(\Delta\) vuông ABC, có :

góc CAD + góc BAD = 90o ( 2 góc phụ nhau )

Mà góc BDA = góc BAD ( cmt )

Từ các điều trên \(\Rightarrow\)góc HAD = góc CAD    (1)

Mà tia AD nằm giữa 2 tia AH, AC ( cách vẽ )    (2)

Từ (1) và (2) \(\Rightarrow\) AD là tpg của góc HAC ( đpcm )