Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D C B A I 6cm 2cm K
Ta có: \(ID=IA+AD=2+8=10cm\)
Áp dụng định lí Pitago trong \(\Delta IDC\) vuông tại \(D\)có:
\(IC^2=ID^2+DC^2\)
\(\Rightarrow IC^2=8^2+6^2\)
\(\Rightarrow IC=\sqrt{100}=10cm\)
Ta có: \(AK//DC\left(\hept{\begin{cases}ID\perp AK\\ID\perp DC\end{cases}}\right)\)
Áp dụng talet ta có:
\(\frac{IC}{IK}=\frac{ID}{IA}\Leftrightarrow\frac{10}{IK}=\frac{8}{2}\)
\(\Leftrightarrow IK=\frac{10.2}{8}=2,5cm\)
Vậy .........................
Xét tam giác IDC vuông tại D, ta có:
IC2 = ID2 + DC2
=> IC2 = 82 + 62
=> IC2 = 100 = 102
=> IC = 10
Xét tam giác IDC, ta có:
AK // DC ( AB // DC, K thuộc AB)
-> IK phần IC = IA phần ID ( định lý Talet)
-> IK phần 10 = 2 phần 8
-> IK = 2.5 cm
I A B C D
Bài 3:
Xét ΔCBD có CD=CB
nên ΔCBD cân tại C
Suy ra: \(\widehat{CDB}=\widehat{CBD}\)
mà \(\widehat{CDB}=\widehat{ADB}\)
nên \(\widehat{ADB}=\widehat{DBC}\)
mà hai góc này ở vị trí so le trong
nên AD//BC
hay ADCB là hình thang
ta có AI là tia đối của AD=>I thuộc AD =>AI//BC
=>áp dụng hệ quả Talet
\(\frac{IE}{EC}=\frac{AE}{EB}=\frac{IA}{BC}\)=>\(\frac{IE}{EC}=\frac{IA}{BC}=>IA.EC=BC.IE\)
thay \(\frac{IE}{EC}=\frac{2}{6}=>IE=2cm\)