K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
31 tháng 10 2020
A B C D H O 1
a) Nối BO. Xét hai tam giác vuông BAO và BHO có:
OB chung, BH=BA(gt)=> tam giác BAO= tam giác BHO (ch-cgv)
=> OA=OH
Mặt khác hình vuông ABCD có đường chéo là phân giác => D1 = 45o
Trong tam giác vuông OHD có 1 góc 45o nên cân hay OH=DH
Vậy OA=OH=DH
b) theo chứng minh trên ta có: OH=OA
Lại có: OH vuông góc với BD
=> Đường thẳng BD tiếp xúc với đường tròn tâm O bán kính OA
29 tháng 5 2017
I A B O H D E C C'
- Vì \(\Delta ADC\)nội tiếp đường tròn đường kính AO \(\Rightarrow\widehat{ADO}=90^O\Rightarrow OD⊥AC\left(1\right)\)mà \(\Delta ABC\)nội tiếp đường tròn (O) \(\Rightarrow\widehat{ACB}=90^O\Rightarrow BC⊥AC\left(2\right)\)từ 1 và 2 có \(OD\downarrow\uparrow BC\)Mà O là trung điểm BC thì D sẽ phải là trung điểm AC => AD = DC
- do \(OH⊥BC\Rightarrow\widehat{CHO}=90^0\left(3\right)\)Mà \(\widehat{ODC}=90^0\left(4\right)\)TỪ 3 và 4 có D và H nhìn OC dưới cùng một góc vuông nên DOHC nội tiếp đường tròn đường kính OC
- Vì \(OA=OB=OC=\frac{AB}{2}=3,HB=2OH\Rightarrow HB=\frac{2}{3}OB=\frac{2.3}{3}=2\).Theo hệ thức lượng trong tam giác vuông \(\Delta BCA\)có \(BC=\sqrt{HB.AB}=\sqrt{2.6}=\sqrt{12}\)Và HA=AB-HB=6-2=4 => \(AC=\sqrt{AH.AB}=\sqrt{4.6}=2\sqrt{6}\Rightarrow DC=\frac{AC}{2}=\frac{2\sqrt{6}}{2}=\sqrt{6}\)Xét Vuông \(\Delta DCB\)có:\(BD^2=DC^2+BC^2=6+12=18\),\(ID=IO=\frac{OA}{2}=\frac{3}{2}\),\(IB=IO+OB=\frac{3}{2}+3=\frac{9}{4}\)ta có :\(ID^2+BD^2=\frac{9}{4}+18=\frac{81}{4}=IB^2\)Vậy theo hệ thức lượng trong tam giác vuông có \(\Delta IDB\)Vuông tại D \(\Rightarrow ID⊥BD\)Mà ID là bán kính của (I) => BD là tiếp tuyến của (I)
a: Xét ΔOAB vuông tại A và ΔOHB vuông tại H có
OB chung
BA=BH
Do đó: ΔOAB=ΔOHB
Suy ra: OA=OH
Vì ABCD là hình vuông
nen DB là phân giác của góc ADC
=>góc ODH=45 độ
=>ΔOHD vuông cân tại H
=>OH=HD=OA
b: Vì OB không vuông góc với BD
nên BD là cát tuyến của (O;OB)