K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2022

a.- Xét △KDC có:

DC//BF (ABCD là hình bình hành).

=>\(\dfrac{CK}{KF}=\dfrac{DK}{BK}\) (định lí Ta-let). (1)

- Xét △KDM có:

MD//BD (ABCD là hình bình hành).

=>\(\dfrac{DK}{BK}=\dfrac{MK}{CK}\) (định lí Ta-let). (2)

- Từ (1) và (2) suy ra:

\(\dfrac{CK}{KF}=\dfrac{KM}{CK}\). Vậy \(CK^2=KM.KF\)

b. - Xét △KDC có:

DC//BF (ABCD là hình bình hành).

=> \(\dfrac{DK}{BK}=\dfrac{CK}{CF}\) (định lí Ta-let). (3)

- Xét △KDM có:

MD//BD (ABCD là hình bình hành).

=>\(\dfrac{DK}{BK}=\dfrac{MK}{CM}\) (định lí Ta-let). (4)

- Từ (3) và (4) suy ra:  \(\dfrac{CK}{CF}=\dfrac{MK}{CM}\)

=>\(\dfrac{CK}{CF}=\dfrac{MK}{CM}=\dfrac{CK+MK}{CF+CM}\) (t/c tỉ lệ thức).

=>\(\dfrac{CK}{CF}=\dfrac{CM}{CF+CM}\)

=>\(CK=\dfrac{CM.CF}{CF+CM}\)
=>\(\dfrac{1}{CK}=\dfrac{CF+CM}{CM.CF}\)

=>\(\dfrac{1}{CK}=\dfrac{1}{CF}+\dfrac{1}{CM}\)

NV
30 tháng 1 2022

c.

Do \(\widehat{DBC}=\widehat{CBE}\Rightarrow BC\) là phân giác trong góc \(\widehat{DBE}\) trong tam giác BDE

Theo định lý phân giác: \(\dfrac{BE}{BD}=\dfrac{CE}{CD}\) (1)

Trong tam giác MCD, do \(AF||CD\) nên theo định lý Talet:  \(\dfrac{AF}{CD}=\dfrac{MF}{MC}\)

Trong tam giác MCE, do \(BF||CE\) nên theo định lý Talet: \(\dfrac{BF}{CE}=\dfrac{MF}{MC}\)

\(\Rightarrow\dfrac{AF}{CD}=\dfrac{BF}{CE}\Rightarrow\dfrac{CE}{CD}=\dfrac{BF}{AF}\) (2)

(1);(2) \(\Rightarrow\dfrac{BF}{AF}=\dfrac{BE}{BD}\) (đpcm)

Sửa đề: ΔABC cân tại A

a:ΔABC cân tại A

mà AD là đường phân giác

nên AD là đường cao

=>AD vuông góc BC

b: Xét ΔAFI và ΔAEI có

AF=AE
góc FAI=góc EAI

AI chung

=>ΔAFI=ΔAEI

=>góc AFI=góc AEI

=>FI vuông góc AB

c: Xét ΔABC có

BE,AD là đường cao

BE cắt AD tại I

=>I là trực tâm

=>CI vuông góc AB

=>C,I,F thẳng hàng

6 tháng 5 2016

có đứa nào ngu như mày ko nguyen hai yen hahahahahah

30 tháng 8 2019

Câu hỏi của Hồ Phong Thư - Toán lớp 8 - Học toán với OnlineMath

12 tháng 10 2021

Cho t/giác ABC cân tại A. Trên cạnh AB lấy điểm E. Trên tia đối của tia CA lấy điểm F sao cho CF=BE. Vẽ tia Bx vuông góc AB & Cy vuông góc AC. Gọi I là giao điểm của Bx và Cy

a, C/m t/giác IEF cân 

b, Vẽ qua E đường thẳng song song với BC cắt AC tại D. C/m CD=CF

c, Gọi H là Giao điểm của EF và BC. C/m E, F đối xứng qua IH

Câu a ,b mình biết làm rồi còn câu c nữa thôi. SIN LOI MINH KO BIET LAM

a: Xét ΔABE có \(\widehat{BAE}=\widehat{BEA}\left(=\widehat{DAE}\right)\)

nên ΔABE cân tại B

hay BA=BE

b: Ta có: ΔBAE cân tại B

mà BF là đường phân giác ứng với cạnh AC

nên BF là đường cao ứng với cạnh AC