\(\pe...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

B C D A E F H M N

a) Xét tam giác AFB và tam giác DMA có:

\(\widehat{ABF}=\widehat{DAM}\)  (Cùng phụ với góc \(\widehat{BAM}\)  )

\(\widehat{FAB}=\widehat{MDA}=90^o\)

AB = AD

\(\Rightarrow\Delta AFB=\Delta DMA\)  ( Cạnh góc vuông, góc nhọn kề)

\(\Rightarrow AF=DM\)

\(\Rightarrow DM=AE\)

Xét tứ giác AEMD có AE song song và bằng DM nên nó là hình bình hành.

Lại có \(\widehat{EAD}=90^o\)  nên AEMD là hình chữ nhật.

b) Đặt \(\frac{AE}{EB}=k\); Ta có các tỉ số: \(\frac{AE}{EB}=\frac{MD}{MC}=\frac{AD}{CN}=k\)

Ta có:  \(\frac{S_{AEH}}{S_{ABH}}=\frac{k}{k+1}\)

Ta có \(\frac{AE}{EB}=\frac{MD}{MC}=\frac{AD}{CN}=\frac{BC}{CN}=\frac{S_{BCH}}{S_{BNH}}=\frac{k}{k+1}\)

Vậy thì \(\frac{S_{AEH}}{S_{ABH}}=\frac{S_{CBH}}{S_{BNH}}\Rightarrow\frac{S_{AEH}}{S_{ABH}}=\frac{4S_{AEH}}{S_{BNH}}\Rightarrow\frac{S_{BNH}}{S_{BAH}}=\frac{1}{4}\)

\(\Rightarrow\frac{AH}{HN}=\frac{1}{4}\Rightarrow\frac{AF}{BN}=\frac{1}{4}\)

Ta có: \(\frac{AF}{BN}=\frac{AF}{BC+CN}=\frac{AF}{\left(k+1\right)AF+\left(\frac{k+1}{k}\right)AF}=\frac{1}{4}\)

\(\Rightarrow k=1\)

Vậy thì AE = EB hay E, F là trung điểm AB, AC.

Từ đó suy ra \(EF=\frac{BD}{2}=\frac{AC}{2}\)

Vậy AC = 2EF.

c) Ta thấy ngay \(\Delta ADM\sim\Delta NCM\left(g-g\right)\)

\(\Rightarrow\frac{AM}{MN}=\frac{AD}{CN}\Rightarrow AM.CN=MN.AD\)

\(\Rightarrow AM\left(AD+CN\right)=AN.AD\)

\(\Rightarrow AM.BN=AD.AD\)

\(\Rightarrow AM^2.BN^2=AN^2.AD^2\)

\(\Rightarrow AM^2\left(AD^2+BN^2-AD^2\right)=AN^2.AD^2\)

\(\Rightarrow AM^2\left(AN^2-AD^2\right)=AN^2.AD^2\)

\(\Rightarrow AM^2.AN^2=AM^2.AD^2+AN^2.AD^2\)

\(\Leftrightarrow\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)

7 tháng 4 2019

phần b bạn giải dài quá 

ta có tam giác BAF đồng dạng với BHA (g.g)

=> af/ah=bf/ab=ab/hc

<=> af/ah=ab/hb

<=>  ae/ah=bc/hb

mà hbc=bah

suy ra hbc đồng dạng với hae (cgc)

mà ti le diện tích đồng dạng bằng bình phương tỉ lệ đồng dạng

suy ra (ae/bc)^2=1/4

=>ae/ab=1/2

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0
10 tháng 4 2018

Câu d, là câu riêng luôn rồi nhé 

Đặt các cạnh hình vuông là a, BM= BE= x 

\(\Rightarrow S_{MBE}=\frac{x^2}{2}\)

\(S_{AMD}=S_{CED}=\frac{a\left(a-x\right)}{2}\)

Ta có: \(S_{DEN}=a^2-\left(a\left(a-x\right)+\frac{x^2}{2}\right)\)

\(=\frac{2a^2-2a^2+2ax-x^2}{2}\)

\(=\frac{a^2-\left(a^2-2ax+x^2\right)}{2}\)

\(=\frac{a^2}{2}-\frac{\left(a-x\right)^2}{2}\le\frac{a^2}{2}\)

Dấu "=" xảy ra khi: a=x <=> BC=BE <=> E trùng C 

Quá trình mình làm chỉ tắt những ý chính, bạn làm bài cần làm đầy đủ hơn!!! 

16 tháng 3 2021

góc A > 90o

21 tháng 2 2019

bạn vào phần câu hỏi tương tự nhá =)))