Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, vì tứ giác ABCD là hình vuông => AB = BC = CD = DA .
góc A = góc B = góc C = góc D
mà AM = BN = CH = DK ( gt )
=> AM = BM =BN = CN = CH = DH = DK = AK
Xét tam giác AMK , tam giác BNM , tam giác CHN , tam giác DKH có :
AK = AM = BM = BN = CN = CH = DH = DK
góc A = góc B = góc C = góc D
=> tam giác AMK = tam giác BNM = tam giác CHN = tam giác DKH ( c.g.c )
( mình gộp luôn ý b nha ! )
b,
Do đó KM = NM = NH = KH (1)
và góc MKA = góc NMB
Ta có góc KMN = 1800 - ( góc KMA + góc NMB ) = 1800 - (góc KMA + góc MKA )
= 1800 - 900 = 900 (2)
Từ (1) và (2) => MN vuông góc với MK
chứng minh tự 3 góc còn lại kết hợp với (1)
ta được tứ giác MNHK là hình vuông .

Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E

Câu hỏi của Bảo Châu Trần - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo lời giải tại đây nhé.
Bài 5:
Cho ABC vuông tại A, kẻ phân giác BM ( M AC), trên cạnh BC
lấy điểm E sao cho BE = AB
a) Chứng minh 2 tam giác BAM BEM .
b) Gọi F là giao điểm của đường thẳng ME và đường thẳng AB.
Chứng minh: FM = MC.
c) Chứng minh: AM < MC
d) Chứng minh AE // FC.