Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Gọi r = OA, α là góc lượng giác (Ox, OA), β là góc lượng giác (Ox, OA'). Giả sử A'= ( x'; y'). Khi đó ta có:
β = α - , x = r cos α, y = r sin α
Suy ra:
x' = r cos β = r cos ( α - ) = r sinα = y
y' = r sin β = r sin ( α - ) = - r cos α= - x
Do đó phép quay tâm O góc - biến A(-3;2) thành A'(2;3). Các trường hợp khác làm tương tự
b)
Gọi tam giác là ảnh của tam giác A'B'C' qua phép đối xứng trục Ox. Khi đó (2;-3), (5;-4), (3;-1) là đáp số cần tìm.
a) (hình bên)
Gọi r = OA, α là góc lượng giác (Ox, OA), β là góc lượng giác (Ox, OA'). Giả sử A'= ( x'; y'). Khi đó ta có:
β = α - , x = r cos α, y = r sin α
Suy ra
x' = r cos β = r cos ( α - ) = r sinα = y
y' = r sin β = r sin ( α - ) = - r cos α= - x
Do đó phép quay tâm O góc - biến A(-3;2) thành A'(2;3). Các trường hợp khác làm tương tự
b) ( hình 1.26)
Gọi tam giác là ảnh của tam giác A'B'C' qua phép đối xứng trục Ox. Khi đó (2;-3), (5;-4), (3;-1) là đáp số cần tìm
Hướng dẫn (khuya quá rồi).
Trong mp (ADN), lấy Q thuộc AD sao cho \(NP||GQ\)
\(\Rightarrow\left(\overrightarrow{MG};\overrightarrow{NP}\right)=\left(\overrightarrow{MG};\overrightarrow{GQ}\right)=180^0-\widehat{MGQ}\)
Áp dụng định lý hàm cos là tính được (\(GP=\dfrac{2}{3}NP\) ; tính MQ dựa vào hàm cos tam giác AMQ)
a) Phép quay tâm O góc \(120^0\) biến F, A, B lần lượt thành B, C, D; Biến trung điểm I của AB thành trung điểm J của CD. Nên biến tam giác AIF thành tam giác CJB
b) Phép quay tâm E góc \(60^0\) biến A, O, F lần lượt thành C, D, O