\(\frac{1}{AM^2}+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

BẠN DÙNG ĐỊNH LÝ TA-LÉT ĐỂ C/M OM=ON

Vì OM // AB & OM // CD nên 

\(\frac{OM}{AB}=\frac{DM}{AD}\&\frac{OM}{CD}=\frac{AM}{AD}\)

\(\Rightarrow\frac{OM}{AB}+\frac{OM}{CD}=\frac{DM}{AD}+\frac{AM}{AD}\)

\(\Leftrightarrow OM\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{DM+AM}{AD}\)

\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OM}\)(1)

TƯƠNG TỰ \(\frac{1}{AB}+\frac{1}{CB}=\frac{1}{ON}\)(2)

CỘNG VẾ VỚI VẾ CỦA (1) VÀ (2) TA CÓ:

\(2\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{1}{OM}+\frac{1}{ON}\)MÀ OM=ON(C/M TRÊN) NÊN MN=2.OM

\(\Rightarrow2\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{1}{OM}+\frac{1}{OM}=\frac{2}{OM}\)

\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{2.OM}=\frac{2}{MN}\left(ĐPCM\right)\)

31 tháng 3 2017

Mình mới học lớp 5 thôi nên chỉ vẽ hình thôi à! Thông cảm nha!

Hình như sau:

Thấy đúng thì !

27 tháng 4 2017

bạn tự vẽ hình nhé 

xét có tam giácADF=tam giác ABE\(\Rightarrow\)AE=AF có SAFM=AF.AM/2=AD.FM/2\(\Rightarrow\)AF.AM=AD.FM\(\Rightarrow\left(AF.AM\right)^2=\left(AD.FM\right)^2\)\(\Rightarrow\frac{AD^2.FM^2}{AM^2.AF^2}=1\)\(\Rightarrow\frac{AD^2\left(AE^2+AM^2\right)}{AE^2.AM^2}=1\)(Theo định lý pytago và AE=AF)

\(\Rightarrow\frac{1}{AD^2}=\frac{AE^2+AM^2}{AE^2.AM^2}=\frac{1}{AE^2}+\frac{1}{AF^2}\)MÀ AD ko đổi \(\Rightarrow\frac{1}{AE^2}+\frac{1}{AM^2}\)ko phụ thuộc vào vị trí của E trên BC

1 tháng 2 2021

Xét ΔADNΔADN và ΔMBAΔMBA có:

ˆDAN=ˆBMADAN^=BMA^ (AB//DC nên hai góc ở vị trí so le trong bằng nhau)

ˆAND=ˆMABAND^=MAB^ (hai góc ở vị trí so le trong)

⇒ΔADN∼ΔMBA⇒ΔADN∼ΔMBA (g.g)

⇒DNBA=DABM⇒DNBA=DABM (hai cạnh tương ứng)

⇒BM.DN=BA.DA⇒BM.DN=BA.DA mà BA,DABA,DA là hai cạnh của hình bình hành, hình bình hành cố định nên BM.DNBM.DN cố định (đpcm)

mình nghĩ dc câu a thôi

29 tháng 2 2020

A B C D I K O

\(1,\hept{\begin{cases}OI//AB\Rightarrow\frac{OI}{AB}=\frac{OD}{BD}\\OI//CD\Rightarrow\frac{OI}{CD}=\frac{OA}{AC}\\AB//CD\Rightarrow\frac{OA}{AC}=\frac{OB}{BD}\end{cases}}\Rightarrow\frac{OI}{AB}+\frac{OI}{CD}=\frac{OD}{BD}+\frac{OA}{AC}=\frac{OD}{BD}+\frac{OB}{BD}=\frac{BD}{BD}=1\)

\(\hept{\begin{cases}OK//AB\Rightarrow\frac{OC}{AC}=\frac{OK}{AB}\\OK//CD\Rightarrow\frac{OK}{CD}=\frac{OB}{BD}\\\frac{CB}{BD}=\frac{OA}{AC}\end{cases}}\Rightarrow\frac{OK}{AB}+\frac{OK}{CD}=\frac{OC}{AC}+\frac{OB}{BD}=\frac{OC}{AC}+\frac{OA}{AC}=\frac{AC}{AC}=1\)

\(2,\hept{\begin{cases}\frac{OI}{AB}+\frac{OI}{CD}=1\\\frac{OK}{AB}+\frac{OK}{CD}=1\end{cases}}\Rightarrow\frac{OI}{AB}+\frac{OI}{CD}+\frac{OK}{AB}+\frac{OK}{CD}=2\)

\(\Leftrightarrow\frac{OI+OK}{AB}+\frac{OI+OK}{CD}=2\)

\(\Leftrightarrow\frac{IK}{AB}+\frac{IK}{CD}=2\)

\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{IK}\left(đpcm\right)\)

29 tháng 2 2020

Giúp mik bài này với: https://olm.vn/hoi-dap/detail/244594379058.html

7 tháng 8 2016

a) Xét ΔOIC và ΔABC có:

   \(\widehat{ACB}\) : góc chung

   \(\widehat{OIC}=\widehat{ABC}\) (đồng vị do JI//AB(gt))

 => ΔOIC~ΔABC(g.g)

=>\(\frac{OI}{AB}=\frac{CI}{BC}\)

=> BC.OI=AB.CI

b) Theo định lý đảo của định lý ta-let vào ΔBDC :

=>  \(\frac{OI}{DC}=\frac{BI}{BC}\)