\(\widehat{xOy}=45^o\)sao ch...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2020

Bạn còn cần giúp nx khôngg

21 tháng 8 2019

giup mình với mai đi hc rồi

Bài 1: cho \(\Delta\)ABC vuông tại A, có AB=6cm, AC=8cm. vẽ đường cao AH a) tính BC b) Chứng minh \(\Delta\)ABC\(\sim\)\(\Delta\)AHB c) chứng minh AB2=BH.BC. tính BH,HC d) vẽ phân giác AD của góc A(D\(\in\)BC). tính DB Bài 2: cho hình thang cân ABCD có AB//CD và AB<DC, đường chéo BD vuông góc với cạnh bên BC. vẽ đường cao BH,AK a) chừng minh \(\Delta\)BDC\(\sim\)\(\Delta\)HBC b) chứng minh BC2=HC.DC c) chứng minh \(\Delta...
Đọc tiếp

Bài 1: cho \(\Delta\)ABC vuông tại A, có AB=6cm, AC=8cm. vẽ đường cao AH

a) tính BC

b) Chứng minh \(\Delta\)ABC\(\sim\)\(\Delta\)AHB

c) chứng minh AB2=BH.BC. tính BH,HC

d) vẽ phân giác AD của góc A(D\(\in\)BC). tính DB

Bài 2:

cho hình thang cân ABCD có AB//CD và AB<DC, đường chéo BD vuông góc với cạnh bên BC. vẽ đường cao BH,AK

a) chừng minh \(\Delta\)BDC\(\sim\)\(\Delta\)HBC

b) chứng minh BC2=HC.DC

c) chứng minh \(\Delta AKD\sim\Delta BHC\)

d)cho BC=15cm, DC=25cm. Tính HC, HD

e)tính diện tích hình thang ABCD

Bài 3:

cho\(\Delta\)ABC các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K. gội M là trung điểm của BC

a) chứng minh \(\Delta ADB\sim\Delta AEC\)

b)chứng minh HE.HC=HD.HB

c) chứng minh H,K,M thẳng hàng

d)\(\Delta ABC\) phải có điều kiện nào thì tứ giác BHCK là hình thoi? hình chữ nhật?

1

Bài 1:

a: BC=10cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC đồg dạg với ΔHBA

c: Xét ΔaBC vuông tại A có AHlà đường cao

nên \(AB^2=BH\cdot BC\)

=>BH=36/10=3,6(cm)
=>CH=6,4cm

d: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

hay BD/3=CD/4

Áp dụng tính chất của dãy tỉ só bằng nhau ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

Do đó:BD=30/7cm

24 tháng 6 2018

A B C D O M N E K H

1) Ta có: ^MOB + ^BON = ^MON =900; ^NOC + ^BON = ^BOC = 900

=> ^MOB = ^NOC.

Xét \(\Delta\)OMB và \(\Delta\)ONC: ^MOB = ^NOC (cmt); OB=OC; ^OBM = ^OCN (=450)

=> \(\Delta\)OMB=\(\Delta\)ONC (g.c.g) => OM=ON (2 cạnh tương ứng)

Xét \(\Delta\)MON có: ^MON=900; OM=ON => \(\Delta\)MON vuông cân tại O (đpcm).

2) Ta có: \(\Delta\)OMB=\(\Delta\)ONC (cmt) => BM=CN => AB-BM=BC-CN => AM=BN

Suy ra \(\frac{AM}{BM}=\frac{BN}{CN}\). Mà \(\frac{BN}{CN}=\frac{AN}{EN}\)(Hệ quả ĐL Thales)

Nên \(\frac{AM}{BM}=\frac{AN}{EN}\)=> MN // BE (ĐL Thales đảo) (đpcm).

3) Do MN // BE (cmt) nên ^MNO = ^BKO = 450 (2 góc đồng vị).

Mà ^BCO = 450 => ^BKO = ^BCO =450 hay ^BKN = ^OCN => \(\Delta\)BNK ~ \(\Delta\)ONC (g.g)

\(\Rightarrow\frac{BN}{ON}=\frac{KN}{CN}\)hay \(\frac{BN}{KN}=\frac{ON}{CN}\)=> \(\Delta\)BON ~ \(\Delta\)KCN (c.g.c)

=> ^OBN = ^CKN => ^CKN=450 (Vì ^OBN=450)

Vậy ^BKC = ^BKO + ^CKN = 450+450 = 900 => CK vuông góc BE (đpcm).

4) KH // OM, OM vuông góc OK => KH vuông góc OK. Hay KH vuông góc NK

=> ^CKH = ^NKH - ^CKN = 900 - 450 =450 => KC là phân giác ^NKH

Suy ra \(\frac{KN}{KH}=\frac{CN}{CH}=\frac{BN}{BH}\)(ĐL đường phân giác trong tam giác) (1)

Dễ thấy KN là phân giác trong \(\Delta\)BKC => \(\frac{KC}{KB}=\frac{CN}{BN}=\frac{CH}{BH}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{KC}{KB}+\frac{KN}{KH}=\frac{BN+CH}{BH}\Leftrightarrow\frac{KC}{KB}+\frac{KN}{KH}+\frac{CN}{BH}=\frac{BN+CH+CN}{BH}\)

\(\Rightarrow\frac{KC}{KB}+\frac{KN}{KH}+\frac{CN}{BH}=\frac{BH}{BH}=1\)(đpcm).