\(\dfrac{-3}{2};\dfrac{1}{2}\)). N là điểm tr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 7 2021

Đặt \(AB=a\), qua N kẻ đường thẳng song song BC cắt AB và CD lần lượt tại P và Q

Theo Talet: \(\Rightarrow\dfrac{NQ}{AD}=\dfrac{CQ}{CD}=\dfrac{CN}{AC}=\dfrac{1}{4}\Rightarrow\left\{{}\begin{matrix}NQ=\dfrac{a}{4}\Rightarrow NP=\dfrac{3a}{4}\\CQ=BP=\dfrac{a}{4}\Rightarrow DQ=AP=\dfrac{3a}{4}\\\end{matrix}\right.\) 

Pitago tam giác ADM: \(DM^2=AM^2+AD^2=\dfrac{5a^2}{4}\)

Pitago tam giác MNP: \(MN^2=MP^2+PN^2=\dfrac{5a^2}{8}\)

Pitago tam giác DQN: \(DN^2=DQ^2+QN^2=\dfrac{5a^2}{8}\)

\(\Rightarrow\left\{{}\begin{matrix}MN=DN\\MN^2+DN^2=DM^2\end{matrix}\right.\) \(\Rightarrow\Delta DMN\) vuông cân tại N

Gọi I là trung điểm DM \(\Rightarrow IN\perp DM\)

Phương trình đường thẳng qua N và vuông góc DM có dạng:

\(0\left(x+\dfrac{3}{2}\right)+1\left(y-\dfrac{1}{2}\right)=0\Leftrightarrow y-\dfrac{1}{2}=0\)

Tọa độ I là nghiệm: \(\left\{{}\begin{matrix}x-1=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\) \(\Rightarrow I\left(1;\dfrac{1}{2}\right)\)

\(\Rightarrow\overrightarrow{IN}=\left(-\dfrac{5}{2};0\right)\Rightarrow IN=\dfrac{5}{2}\)

\(\Rightarrow DI=IN=\dfrac{5}{2}\)

Do D thuộc x-1=0 nên tọa độ có dạng \(D\left(1;d\right)\) \(\Rightarrow\overrightarrow{ID}=\left(0;d-\dfrac{1}{2}\right)\)

\(\Rightarrow\left|d-\dfrac{1}{2}\right|=\dfrac{5}{2}\Rightarrow d=-2\)

\(\Rightarrow D\left(1;-2\right)\)

Từ đây dễ dàng xác định tọa độ các điểm còn lại.

Gọi K là giao điểm AC và DM, theo Talet: 

\(\dfrac{AK}{CK}=\dfrac{KM}{DK}=\dfrac{AM}{DC}=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}DK=\dfrac{2}{3}DM=\dfrac{4}{3}DI\\AK=\dfrac{1}{3}AC=\dfrac{4}{9}AN\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{DK}=\dfrac{4}{3}\overrightarrow{DI}\Rightarrow\) tọa độ K

\(\overrightarrow{AK}=\dfrac{4}{9}\overrightarrow{AN}\Rightarrow\) tọa độ A

Tọa độ D, tọa độ I \(\Rightarrow\) tọa độ M \(\Rightarrow\) tọa độ B

\(\Rightarrow\) Tọa độ C

NV
15 tháng 7 2021

undefined

7 tháng 4 2021

Câu này đề Hà Tĩnh 2016 - 2017.

Tham khảo:

Đáp án và đề thi HSG toán 10 sở GD&ĐT Hà Tĩnh 2016-2017

5 tháng 5 2023

Để giải bài toán này, ta cần sử dụng các kiến thức về hình học phẳng và đường thẳng.

Trước tiên, ta xác định tọa độ của điểm A. Vì AB là đường chéo của hình vuông nên ta có thể sử dụng định lí Pythagoras trong tam giác vuông ABD để tính độ dài cạnh của hình vuông, rồi suy ra tọa độ của điểm A.

Với AB: x-y+4=0, ta có hai điểm A thỏa mãn điều kiện này: A(x,y)=(y-4,y) và A'(x',y')=(x'+4,x'). Vì độ dài cạnh của hình vuông là xác định nên ta chỉ cần tìm được một điểm trên cạnh AB, chẳng hạn A, để suy ra tọa độ của các điểm còn lại.

Giả sử ta chọn A(y-4,y), ta có

Tọa độ của B là (y, y-4) (vì AB là đường chéo)Tọa độ của C là (y-4, -y) (vì ABCD là hình vuông)Tọa độ của D là (-y, y-4) (vì ABCD là hình vuông)

Ta dễ dàng tính được tọa độ của M và N:

Tọa độ của M là ((y+y-4)/2, (y-4)/2) = (y-2, -2)Tọa độ của N là (x, 2x+6) với điểm N thuộc đường thẳng d: x-2y-6=0 và N có hoành độ dương. Thay x-2y-6=0 vào ta có x=2y+6, suy ra tọa độ của N là (2y+6, 2x+6) = (2y+6, 4y+18)

Tiếp theo, ta tính khoảng cách d giữa đường thẳng AB và điểm H. Theo công thức, ta có d(H, AB) = |Ax + By + C| / sqrt(A^2 + B^2), với (A, B, C) là vector pháp tuyến của đường thẳng AB.

Vì AB: x-y+4=0 nên vector pháp tuyến của AB là (1, -1). Điểm H là giao điểm của hai đường thẳng AM và BN nên ta dễ dàng tính được tọa độ của H là ((y-2)/2, (y-4)/2). Thay vào công thức tính khoảng cách ta có d(H, AB) = |y-2 + 2y-4 + 4| / sqrt(1+1) = 8sqrt(2)/2 = 4sqrt(2).

Vậy, tọa độ các đỉnh của hình vuông là:

A(y-4, y)B(y, y-4)C(y-4, -y)D(-y, y-4)

Và tọa độ của M và N là:

M(y-2, -2)N(2y+6, 4y+18) với y > 0

Khoảng cách giữa đường thẳng AB và điểm H là 4sqrt(2).

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

5 tháng 5 2023

Để giải bài toán này, ta thực hiện các bước sau đây:

Bước 1: Tìm tọa độ của điểm A. Vì hình vuông ABCD là hình vuông nên ta có AB=BC=CD=DA. Vậy, ta có tọa độ điểm A là A(0;6).

Bước 2: Tìm tọa độ của điểm C. Vì M là trung điểm của BC và BM=MC nên ta có tọa độ điểm C là C(2;2).

Bước 3: Tìm tọa độ của điểm D. Vì hình vuông ABCD là hình vuông nên ta có AD vuông góc AB và AD=AB. Vậy, tọa độ điểm D là D(-6;4).

Bước 4: Tìm tọa độ của điểm N. Điểm N có tung độ âm nên nằm dưới trục hoành. Ta cần tìm tọa độ của điểm N bằng cách giải hệ phương trình hợp là của đường thẳng d:x-2y-6=0 và đường thẳng CD: y = -x + 4.

Giải hệ phương trình ta có:

x - 2y = -6y = -x + 4

Thay y của phương trình 2 vào phương trình 1 ta có:

x - 2(-x + 4) = -6 <=> x = 2

Thay x = 2 vào phương trình 2 ta có: y = -2 + 4 <=> y = 2

Vậy, tọa đó điểm N là N(2;2).

Bước 5: Tìm tọa độ của điểm B. Vì B là đỉnh của hình vuông ABCD và biết tọa độ của điểm A và C nên ta có tọa độ điểm B là B(-2;6).

Bước 6: Tìm tọa độ của điểm E. Ta biết E thuộc đường thẳng AM nên ta có phương trình đường thẳng AM. Ta có tam giác AEM vuông tại E với AM là đường cao. Vậy, ta sử dụng định lý Pythagoras để tìm tọa độ của E.

Đường thẳng AM có hệ số góc bằng: m = (y_A-y_M)/(x_A-x_M) = (6-3)/(0-2) = -1.5

Vậy, phương trình đường thẳng AM là: y = -1.5x + 6 Điểm E thuộc đường thẳng AM nên thay x của E vào phương trình đường thẳng AM ta có: 3 = -1.5x + 6 <=> x = 2

Thay x của E vào phương thức đường thẳng AM ta có: y = -1.5*2 + 6 <=> y = 3

Vậy, tọa độ điểm E là E(2;3).

Bước 7: Tóm tắt kết quả. Tọa độ các đỉnh hình vuông là: A(0;6), B(-2;6), C(2;2), D(-6;4) Đường thẳng AM có phương trình là: y = -1.5x + 6 Tọa độ của điểm E là E(2;3) Điểm N có tọa độ là N(2;2)

15 tháng 4 2021

Tham khảo:

Đề thi đại học môn Toán khối A năm 2014

15 tháng 4 2021

dạ cảm ơn ^^

1/Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD. Đỉnh B thuộc đường thẳng d1: 2x-y+2=0, đỉnh C thuộc đường thẳng d2: x-y-5=0. Gọi H là hình chiếu của B xuống AC, biết M(\(\dfrac{9}{5}\);\(\dfrac{2}{5}\)), K(9;2) lần lượt là trung điểm của AH và CD Tìm tọa độ các đỉnh hình chữ nhật ABCD, biết điểm C có hoành độ lờn hơn 4 2/Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, biết...
Đọc tiếp

1/Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD. Đỉnh B thuộc đường thẳng d1: 2x-y+2=0, đỉnh C thuộc đường thẳng d2: x-y-5=0. Gọi H là hình chiếu của B xuống AC, biết M(\(\dfrac{9}{5}\);\(\dfrac{2}{5}\)), K(9;2) lần lượt là trung điểm của AH và CD Tìm tọa độ các đỉnh hình chữ nhật ABCD, biết điểm C có hoành độ lờn hơn 4

2/Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, biết B(\(\dfrac{1}{2}\);1). Đường tròn nội tiếp tam giác ABC tieepa xúc với BC, CA, AB lần lượt tại D,E,F. Biết điểm D(3;1). đường thẳng È:y-3=0. Tìm tọa độ điểm A biết A có tung độ dương

3/ Trong mặt phẳng tọa độ Oxy, choa tam giác ABC cân tại A , D là trung điểm AB . Biết rằng I(\(\dfrac{11}{3}\);\(\dfrac{5}{3}\)); E(\(\dfrac{13}{3}\);\(\dfrac{5}{3}\)) lần lượt là tâm đường tròn ngoại tiếp tam giác ABC , trọng tâm tam giác ADC, các diểm M(3;-1);N(-3;0) lần lượt thuộc các đường thẳng DC, AB.Tìm tọa độ các điểm A,B,C, biết A có tung độ dương

4/ Trong mặt phẳng tọa độ Oxy, hãy viết phương trình các cạnh của tam giác ABC biết trực tâm H(1;0) , chân đường cao hạ từ đinh B là K(0;2), trung điểm cạnh AB là M (3;1)

5/ Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông tại C có phân giác trong AD với D (\(\dfrac{7}{2}\);-\(\dfrac{7}{2}\)) thuộc BC . Gọi E,F là hai điểm làn lượt thuộc các cạnh AB, AC sao cho AE=AF. Đường thẳng EF cắt BC taị K.Biết E(\(\dfrac{3}{2}\);-\(\dfrac{5}{2}\)), F có hoành độ nhỏ hơn 3 và phương trình đường thẳng AK : x-2y-3=0. Viết phương trình của các cạnh tam giác ABC.

6/ Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x-1)2+(y-1)2 + 25 và các điểm A (7;9), B(0;8). Tìm tọa độ điểm M thuộc (c) sao cho biểu thức P= MA+2MB min

7/ Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có góc BAC =120O , đường cao BH: \(\sqrt{3}\)x+y-2=0. Trung điểm của cạnh BC là M( \(\sqrt{3}\);\(\dfrac{1}{2}\)) và trực tâm H(0;2). Tìm tọa độ các đỉnh B,C của tam giác ABC

8/ Trong mặt phẳng tọa độ Oxy, CHO (C1); x2 + y2-6x+8y+23=0, (C2) : x2 + y2+12x-10y+53=0 và (d) : x-y-1=0. Viết phương trình đường trong (C) có tâm thuộc (d), tiếp xúc trong với (C1), và tiếp xúc ngoài với (C2)

0
20 tháng 5 2017

Ôn tập cuối năm môn Hình học