K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2018

Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

19 tháng 7 2020

cô Quản Lý Hoàng Thị Thu Huyền ơi cô bảo tham khảo tại đâu thế ạ sao em ko thấy j

31 tháng 10 2016

Hình học lớp 8

a) Tam giác ABC có :

MA = MB (gt)
NB = NC (gt)
nên MN là đường trung bình của tam giác, do đó MN // AC và MN = 12 AC.
Chứng minh tương tự : PQ // AC và PQ = 1/2 AC.
Suy ra MN // PQ và MN = PQ.
Tứ giác MNPQ có hai cạnh đối vừa song song vừa bằng nhau => MNPQ là hính bình hành
1 tháng 11 2016

để mnpq là hình thì abcd là hình than cân

mnpq là hình chữ nhật thì thì abcd ohari là hình thoi

kết quả thôi, còn cách làm thì để tìm hiểu :v, hơi tệ ở cách giải thích

 

24 tháng 2 2018

Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.

24 tháng 10 2016

\(x+2\sqrt{2x^2}+2x^3=0\)

\(\Leftrightarrow x+2x\sqrt{2}+2x^3=0\)

\(\Leftrightarrow x\left(1+2\sqrt{2}+2x^2\right)=0\)

\(\Leftrightarrow x=0\) ( Vì \(1+2\sqrt{2}+2x^2>0\) )

 

 

25 tháng 10 2016

Tìm x biết :

\(x+2\sqrt{2}x^2+2x^3=0\)

\(x\left(1+2\sqrt{2}x+2x^2\right)=0\)

\(x\left(1+\sqrt{2}x\right)^2=0\)

TH1 : x=0

TH2 : \(\left(1+\sqrt{2}x\right)^2=0\)

\(1+\sqrt{2}x=0\)

\(x=\frac{-1}{\sqrt{2}}\)

A B C D H M

a, \(AEMF\)là hình chữ nhật nên \(AE=FM\)

\(DFM\)vuông cân tại \(F\)suy ra \(FM=DF\)

\(\Rightarrow AE=DF\)suy ra \(\Delta ADE=\Delta DCF\)

\(\Rightarrow DE=CF\)

b, Tương tự câu a, dễ thấy \(AF=BE\)

\(\Rightarrow\Delta ABF=\Delta BCE\)

\(\Rightarrow\widehat{ABF}=\widehat{BCE}\) nên \(BF\)vuông góc \(CE\)

Gọi \(H\)là giao điểm của \(BF\)và \(DE\)

\(\Rightarrow H\)là trực tâm của tam giác \(CEF\)

Gọi \(N\)là giao điểm của \(BC\)và \(MF\)

\(CN=DF=AE\)và \(MN=EM=AF\)

\(\Delta AEF=\Delta CMN\)

\(\Rightarrow\widehat{AEF}=\widehat{MCN}\)

\(\Rightarrow CM\perp EF\)

\(\Rightarrow\)Ba đường thẳng DE,BF,CM đồng quy tại H

c, \(AE+EM=AE+EB=AB\)không đổi

\(\left(AE-EM\right)^2\ge0\Rightarrow AE^2+AM^2\ge2AE.AM\)

\(\Rightarrow\left(AE+AM\right)^2\ge4AE.AM\Rightarrow\left(\frac{AE+EM}{2}\right)^2=\frac{AB^2}{4}\ge AE.AM=S_{AEMF}\)

Vậy \(S_{AEMF}max\)khi \(AE=EM\)( M là giao AC và và BD )

21 tháng 5 2021

M C D E A B