Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆CDE và ∆CBF có :
CD = CB (Vì ABCD là hình vuông)
ˆCDE=ˆCBFCDE^=CBF^(=90o=90o)
DE = BF (gt)
⇒⇒∆CDE = ∆CBF (c.g.c)
⇒⇒CE = CF (tương ứng) và ˆDCE=ˆBCFDCE^=BCF^ (tương ứng)
Ta có : ˆDCE+ˆECB=90oDCE^+ECB^=90o
⇒ˆBCF+ˆECB=90o⇒BCF^+ECB^=90o
⇒ˆECF=90o⇒ECF^=90o
Xét ∆ECF có :
EC = FC (cmt)
ˆECF=90oECF^=90o(cmt)
Suy ra ∆ECF vuông cân tại C
b) Gọi O là giao điểm của AC và BC
⇒O⇒Olà trung điểm AC
Gọi M’ là trung điểm EF
Xét ∆AEF vuông tại A có:
AM’ là trung tuyến ứng với cạnh huyền EF
⇒⇒ AM′=EF2AM′=EF2
Xét ∆ECF vuông tại C có:
CM’ là trung tuyến ứng với cạnh huyền EF
⇒CM′=EF2⇒CM′=EF2
⇒⇒CM’ = AM’
⇒⇒∆AM’C là tam giác cân tại M’
⇒⇒ M’O là đường cao đồng thời là trung tuyến
⇒M′O⊥AC⇒M′O⊥AC
Mà BD ⊥ AC (tính chất đường chéo hình vuông)
⇒⇒M’ ∈ BD
Mà M’ ∈ EF
⇒⇒M’ là giao điểm EF, BC⇒M′≡M⇒M′≡M
Suy ra M là trung điểm EF
a/ \(\widehat{DCE}+\widehat{ECF}=180^o\)
=> \(\widehat{ECF}=90^o\)
Xét t/g DEC và t/g BFC có
EC = FC (GT)
\(\widehat{DCE}=\widehat{BCF}=90^o\)
DC = BC (do ABCD là hình vuông)
=> t/g DEC = t/g BFC (c.g.c)
=> DE = BF (2 cạnh t/ứ(
b/ Xét t/g BEH và t/g DEC có
\(\widehat{BEH}=\widehat{DEC}\) (đối đỉnh)
\(\widehat{EBF}=\widehat{EDC}\) (do t/g BFC = t/g DEC)
\(\Rightarrow\Delta BEH\sim\Delta DEC\) (g.g)
=> \(\widehat{BHE}=\widehat{DCB}=90^o\)
=> \(DE\perp BF\)
Xét t/g BDF có
DE ⊥ BF
BC ⊥ DF
DE cắt BC tại E
=> E là trực tâm t/g BDF
=> .... đpcm
c/ Xét t/g CEF có CE = CF ; M là trung điểm EF
=> CM ⊥ EF
=> \(\widehat{KMC}=90^o\)
Tự cm OKMC làhcn
=> OC = KM => AO = KM
Mà AO // KM (cùng vuông góc vs BD)
=> AOMK là hbh
=> OM // AK
a, Xét 2 tam giác vuông ΔADE và ΔABF có:
AD = AB (ABCD là hình vuông); DE = BF (gt)
⇒ ΔADE = ΔABF (2 cạnh góc vuông)
⇒ AE = AF (1) và ˆDAEDAE^ = ˆBAFBAF^
mà ˆDAEDAE^ + ˆBAEBAE^ = 90o90o
⇒ ˆBAFBAF^ + ˆBAEBAE^ = 90o90o
⇒ ˆEAFEAF^ = 90o90o (2)
Từ (1) và (2) suy ra ΔEAF vuông cân (đpcm)
b, ABCD là hình vuông ⇒ BA = BC và DA = DC
⇒ BD là đường trung trực của AC (3)
ΔEAF vuông cân tại A có AI là trung tuyến ứng với cạnh huyền
⇒ AI = 1212EF
ΔCEF vuông tại C có CI là trung tuyến ứng với cạnh huyền
⇒ CI = 1212EF
⇒ CI = AI ⇒ I thuộc đường trung trực của AC (4)
Từ (3) và (4) suy ra: I thuộc BD (đpcm)
d, Tứ giác AEKF có 2 đường chéo AK, EF cắt nhau tại I là trung điểm mỗi đường
⇒ AEKF là hình bình hành
mà AE = AF và ˆEAFEAF^ = 90o90o
⇒ AEKF là hình vuông (đpcm)