Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
?o?n th?ng f: ?o?n th?ng [A, B] ?o?n th?ng f_1: ?o?n th?ng [D, C] ?o?n th?ng i: ?o?n th?ng [A, D] ?o?n th?ng j: ?o?n th?ng [B, C] ?o?n th?ng k: ?o?n th?ng [A, C] ?o?n th?ng l: ?o?n th?ng [N, M] ?o?n th?ng m: ?o?n th?ng [N, C] ?o?n th?ng n: ?o?n th?ng [D, M] ?o?n th?ng p: ?o?n th?ng [A, M] ?o?n th?ng q: ?o?n th?ng [N, B] A = (-0.8, 5.28) A = (-0.8, 5.28) A = (-0.8, 5.28) B = (2.92, 5.32) B = (2.92, 5.32) B = (2.92, 5.32) D = (-4.48, -0.26) D = (-4.48, -0.26) D = (-4.48, -0.26) C = (-0.76, -0.22) C = (-0.76, -0.22) C = (-0.76, -0.22) ?i?m N: Trung ?i?m c?a i ?i?m N: Trung ?i?m c?a i ?i?m N: Trung ?i?m c?a i ?i?m M: Trung ?i?m c?a j ?i?m M: Trung ?i?m c?a j ?i?m M: Trung ?i?m c?a j ?i?m Q: Giao ?i?m c?a m, n ?i?m Q: Giao ?i?m c?a m, n ?i?m Q: Giao ?i?m c?a m, n ?i?m P: Giao ?i?m c?a p, q ?i?m P: Giao ?i?m c?a p, q ?i?m P: Giao ?i?m c?a p, q
Cô hướng dẫn thôi nhé :)
a. AMCN là hình thoi vì có AN//CM; AN = CM và \(AC\perp MN\)
b. Ta có góc DCB = 120 nên DNMC là hình thoi hay NM = MC = MB. Vậy tam giác NCB vuông tại N.
c. QNPM là hình chữ nhật : NP//QM, NQ//PM, NQ vuông góc PM.
Thấy ngay \(\frac{S_{NQM}}{S_{NMCD}}=\frac{S_{NMP}}{S_{ABMN}}=\frac{1}{4}\Rightarrow\frac{S_{NPMQ}}{S_{ABCD}}=\frac{1}{4}\)
d. Ta tính được DC , từ đó suy ra \(NC=DC\)
\(NB=2DQ=2\sqrt{DC^2-QC^2}\)
Vẽ ra phía ngoài hình vuông 1 tam giác đều ABE. Vì EA=EB; MA=MB nên EM là đường trung trực AB, suy ra ˆMEB=30∘
VÌ ΔEBM=ΔCBM(c.g.c), suy raˆMCB=ˆMEB=30∘⇒ˆMCD=60∘(1).
Mặt khác, ΔAMD=ΔBMC(c.g.c), suy ra: MD=MC (2)
Từ (1) & (2) =>ΔMCDđều (đpcm)
A B C D J S M x y
tam giác AMD= BMC (c-g-c)
trên nửa mặt phẳng bờ AD chứa BC kẻ Ax và Dy sao cho Ax, Dy tạo vs AD các góc 15 độ, chứng cắt nhau tại J
Tam giác AJD có góc DAJ=JDA=15
=> t,g ADJ cân tại J
ta có t.g AJDJ= ABM (g-c-g)
=>AJ=AM
=> t.g AMJ cân tại A mà MAJ=60 (DAJ+JAM+MAB=90)
=> t.g ẠM đều
=>JA=JM
ta có MJS=AMJ+MAJ=60+60=120 (góc ngoài t.g)
tương tự ta có SJD=30
vậy MJD=SJM+SJD=120+30=150
lại có t.g JDM có JD=JM (cùng= JA)
=> JDM cân tại J mà góc MJD=120
=>JDM=15
ta có góc ADJ + JDM+MDC=90
15+15+mdc=90
MDC =60
tam giác MCD cân mà có góc D =60
=> MCD là tam giác đều
Ta có : ADCˆ=ADEˆ+EDCˆADC^=ADE^+EDC^
=> 90O=ADEˆ+15O90O=ADE^+15O
=> ADEˆ=75OADE^=75O
Tương tự ta cũng có : BCEˆ=75oBCE^=75o
Xét ΔADEΔADE và ΔBCEΔBCE có :
AD = BC (do ABCD à hình vuông)
ADEˆ=BCEˆ(=75o)ADE^=BCE^(=75o)
DE=ECDE=EC (do tam giác ECD cân tại E- gt)
=> ΔADEΔADE = ΔBCEΔBCE (c.g.c)
=> AE = BE (2 cạnh tương ứng)
Mà : AD = AE
=> ΔADEΔADE cân tại A
Xét ΔADEΔADE ta có :
ADEˆ=AEDˆ=75oADE^=AED^=75o (tính chất tam giác cân)
=> DAEˆ=180O−(ADEˆ+AEDˆ)DAE^=180O−(ADE^+AED^)
=> DAEˆ=180O−2.75O=30ODAE^=180O−2.75O=30O
Chứng minh tương tự ta có : CBEˆ=30oCBE^=30o
Có : ABEˆ=ABCˆ−CBEˆ=90O−30O=60OABE^=ABC^−CBE^=90O−30O=60O
BAEˆ=BADˆ−EADˆ=90O−30O=60OBAE^=BAD^−EAD^=90O−30O=60O
Xét ΔABEΔABE có :
ABEˆ+BAEˆ+AEBˆ=180OABE^+BAE^+AEB^=180O
=> AEBˆ=180O−2.60O=60OAEB^=180O−2.60O=60O
Thấy : ABEˆ=BAEˆ=AEBˆ=60oABE^=BAE^=AEB^=60o
=> ΔABEΔABE là tam giác đều (đpcm)
Kéo dài DP cắt BC tại K; \(\widehat{DCK}=90-\widehat{DCD}=90-\widehat{DDC}=\widehat{DKC}\)=>PD=PC=PK
Xét \(\Delta PCK\)và \(\Delta BCP\)
xét \(\frac{KC}{PC}=\frac{KC}{PD}=\frac{2.KC}{KD}=2sin15^o\)
\(\frac{CP}{BC}=\frac{PD}{CD}=\frac{DK}{2.CD}=\frac{1}{2cos15^o}=\frac{sin30^o}{cos15^o}\)\(=2sin15^o\)
hai tam giác có chung góc KCP và \(\frac{KC}{PC}=\frac{CP}{BC}\)nên là 2 tam giác đồng dạng =>1=\(\frac{PC}{PK}=\frac{BP}{BC}\) hay BP=BC=BA(vì 2 cạnh góc vuông) hay tam giác BAP cân ở B
Vì PC=PD nên P thuộc đường trung trực của CD => P cũng thuộc đường trung trực AB =>PA=PB => tam giác ABP có 3 cạnh bằng nhau là tam giác đều