K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0
22 tháng 9 2021

\(a,\) Áp dụng HTL tam giác:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=16\\AC^2=BC\cdot CH=8\left(8-2\right)=48\\AH^2=BH\cdot CH=2\left(8-2\right)=12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=4\left(cm\right)\\AC=4\sqrt{3}\left(cm\right)\\AH=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

\(b,\widehat{ADB}=\widehat{AHB}\left(=90^0\right)\Rightarrow ADHB.nội.tiếp\\ \Rightarrow\widehat{DHA}=\widehat{DBA}\left(cùng.chắn.AD\right)\left(1\right)\) \(\left\{{}\begin{matrix}\widehat{CKB}=\widehat{KAB}+\widehat{ABD}\left(góc.ngoài\right)=90^0+\widehat{ABD}\\\widehat{DHB}=\widehat{DHA}+\widehat{AHB}=\widehat{DHA}+90^0\\\widehat{ABD}=\widehat{DHA}\left(cm.trên\right)\end{matrix}\right.\\ \Rightarrow\widehat{CKB}=\widehat{DHB}\\ \left\{{}\begin{matrix}\widehat{CKB}=\widehat{DHB}\\\widehat{CBK}.chung\end{matrix}\right.\Rightarrow\Delta DHB\sim\Delta CKB\left(g.g\right)\\ \Rightarrow\dfrac{BD}{BC}=\dfrac{BH}{BK}\Rightarrow BD\cdot BK=BH\cdot BC\)

 

 

1 tháng 10 2021

...............................................................................

..........................................................................................

...........................................................................tgbvn JGKGITJNNFJFJNFJBFÒNBFOHRJ;FFJh' IIIor   ỉie