K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

A B C D E F K I M P Q

a/

Ta có

\(\widehat{BAE}+\widehat{DAE}=\widehat{ABC}=90^o\)

\(\widehat{FAD}+\widehat{DAE}=\widehat{FAE}=90^o\)

\(\Rightarrow\widehat{BAE}=\widehat{FAD}\)(1)

Ta có \(AB=AD\) (2)

Xét tg vuông BAE và tg vuông DAF

Từ (1) và (2) \(\Rightarrow\Delta BAE=\Delta DAF\) (hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau)

\(\Rightarrow AE=AF\Rightarrow\Delta AEF\)  cân tại A

Mà \(\widehat{FAE}=90^o\Rightarrow\Delta AEF\) vuông cân tại A

Xét \(\Delta AEF\) có

IE=IF

\(\Rightarrow AD\perp EF\) (trong tg cân đường trung tuyến xp từ đỉnh đồng thời là đường cao)

Xét \(\Delta KEF\) có

IE=IF; \(AD\perp EF\)

\(\Rightarrow\Delta KEF\) là tg cân (trong tg đường cao xp từ đỉnh đồng thời là đường trung tuyến thì tg đó là tg cân) \(\Rightarrow KE=KF\)

b/

Ta có \(\Delta AEF\) vuông cân tại A \(\Rightarrow\widehat{AFE}=\widehat{AEF}=45^o\) (1)

Xét \(\Delta ABD\) có

AB=AD; \(\widehat{BAD}=90^o\Rightarrow\Delta ABD\) vuông cân tại A \(\Rightarrow\widehat{ADB}=\widehat{ABD}=45^o\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{ADB}=\widehat{AEF}\) (3)

Gọi P là giao của AD với EF; Q là giao của BD với AE

Xét \(\Delta AFP\) và \(\Delta ABQ\) có

AD=AB

\(\Delta AEF\) cân tại A => AF=AE

\(\widehat{DAF}=\widehat{BAE}\left(cmt\right)\)

\(\Rightarrow\Delta AFP=\Delta ABQ\left(c.g.c\right)\Rightarrow\widehat{APF}=\widehat{AQB}\)

Mà \(\widehat{APF}=\widehat{DPI};\widehat{AQB}=\widehat{EQI}\) (góc đối đỉnh)

\(\Rightarrow\widehat{DPI}=\widehat{EQI}\) (4)

Nối D với I, B với I. Xét \(\Delta DPI\) và \(\Delta EQI\)

Từ (3) và (4) \(\Rightarrow\widehat{DIP}=\widehat{EIQ}\)

Mà \(\widehat{EIQ}+\widehat{FIB}=\widehat{FIE}=180^o\)

\(\Rightarrow\widehat{DIP}+\widehat{FIB}=\widehat{DIB}=180^o\) => D; I; B thẳng hàng

c/ 

Ta có \(AM=AB-BM;CE=BC-BE\)

Mà \(BM=BE;AB=BC\)

\(\Rightarrow AM=CE\)

Ta có AD=CD

\(S_{\Delta ADM}=\frac{AD.AM}{2}=S_{\Delta CDE}=\frac{CD.CE}{2}\Rightarrow S_{\Delta ADM}+S_{\Delta CDE}=2S_{\Delta CDE}=CD.CE\)

\(S_{\Delta BME}=\frac{BE.BM}{2}=\frac{BE^2}{2}\)

Gọi a là cạnh hình vuông ABCD có

\(S_{\Delta DEM}=S_{ABCD}-\left(S_{\Delta ADM}+S_{\Delta CDE}+S_{BME}\right)=\)

\(=a^2-2S_{\Delta CDE}-\frac{BE^2}{2}=a^2-a.CE-\frac{\left(a-CE\right)^2}{2}=\)

\(=\frac{2a^2-2a.CE-a^2+2a.CE-CE^2}{2}=\frac{a^2-CE^2}{2}\)

\(\Rightarrow S_{\Delta DEM}\) lớn nhất khi \(a^2-CE^2\) lớn nhất \(\Rightarrow CE^2\) nhỏ nhất => CE nhỏ nhất

CE nhỏ nhất khi CE=0 => E trùng C

8 tháng 2 2022

jjjjjjjjjj

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0