\(E\in AB;F\in AD\) sao cho AE=DF. Gọi M, N lần lượt là trung điểm c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

E,F lần lượt là trung điểm các cạnh AB,BC nha

mk nhầm

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0
AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Lời giải:

$DE=DF$ nên tam giác $DEF$ cân tại $D$. Do đó đường trung tuyến $DM$ đồng thời là đường cao và đường phân giác, hay $DM\perp EF$ và $\widehat{EDM}=\widehat{MDF}$

Kẻ $DL\perp BF$.

Dễ thấy $DLMF$ nội tiếp do $\widehat{DLF}=\widehat{DMF}=90^0$

$\Rightarrow \widehat{MLF}=\widehat{MDF}=\widehat{EDM}=90^0-\widehat{DEM}=\widehat{MEC}(1)$

Cũng dễ thấy:

$BELD$ là tứ giác nội tiếp do $\widehat{BED}=\widehat{BLD}=90^0$

$\Rightarrow \widehat{BLE}=\widehat{BDE}=90^0-\widehat{B}=\widehat{BCA}$

$\Rightarrow CELF$ là tứ giác nội tiếp.

$\Rightarrow \widehat{CLF}=\widehat{MEC}(2)$

Từ $(1);(2)\Rightarrow \widehat{MLF}=\widehat{CLF}$ kéo theo $L,C,M$ thẳng hàng. 

Do đó:

$\widehat{BCM}=\widehat{ECL}=\widehat{EFL}=\widehat{EFB}$ (đpcm)

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Hình vẽ:

undefined

19 tháng 3 2019

a)\(\Delta\)BCE= \(\Delta\)CDF(c-g-c)

   \(\Delta\)BCE đồng dạng \(\Delta\)MCF (g-g)

    góc CMF=góc B=90

=>CE vuông DF

b) Chứng minh cho AK vuông DF tương tự như trên

=>AK//CE(cùng vuông với DF

19 tháng 3 2019

Còn chứng minh AM = AD là sao

Bài 1: 

Gọi G là trung điểm của BK

Xét ΔBKC có 

M là trung điểm của BC

G là trung điểm của BK

Do đó; MG là đường trung bình

=>MG//KC

hay KI//GM

Xét ΔAGM có 

I là trung điểm của AM

IK//GM

Do đó; K là trung điểm của AG

=>AK=KG=GB

=>AK=1/3AB

2 tháng 10 2017

t.i.c.k mik mik t.i.c.k lại

10 tháng 11 2018

giải đi người ta t.i.c.k cho