Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//KC và MN=KC
=>NCKM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MK
hay góc BMK=90 độ
a)Vì A đối xứng với F qua N =>N là trung điểm AF
Mà I là trung điểm BF(gt) => NI là đường trung bình của tam giác FAB
=>NI//AB,NI=1/2AB .Mà AB//CD(ABCD là hình chữ nhật) =>NI//CD hay NI//MC(M thuộc CD) (1)
Vì NI=1/2AB(cmt), AB=CD(ABCD là hcn) => NI=1/2CD
Lại có: M là trung điểm CD(gt) => MC=MD=1/2CD =>NI=MC (2)
Từ (1) và (2) => CINM là hình bình hành
b)Vì NI//CD (cmt), CD vuông góc với BC(ABCD là hình bình hành)
=>NI vuông góc với BC =>NI là đường cao trong tam giác NBC (3)
Vì góc BNM=90 độ(gt) =>BN vuông góc với NM
Lại có :NM//IC(CINM là hình bình hành) =>CI vuông góc với BN
=>CI là đường cao trong tam giác BNC (4)
Từ (3) và (4) =>I là trực tâm trong tam giác BNC =>BI vuông góc với AC hay BF vuông góc với AC
Gọi O là giao điểm của AC và BD
ABCD là hình vuông
=>AC vuông góc với BD tại trung điểm của mỗi đường và AC=BD
=>AC vuông góc BD tại O, O là trung điểm chung của AC và BD; AC=BD
O là trung điểm chung của AC và BD
=>OA=OC=AC/2 và OB=OD=BD/2
mà AC=BD
nên OA=OC=OB=OD
\(NA=3NC\)
NA+NC=AC
=>3NC+NC=AC
=>4NC=AC
=>\(AC=4NC\)
mà AC=2OC
nên \(2OC=4NC\)
=>OC=2NC
=>N là trung điểm của OC
Gọi K là trung điểm của OD
Xét ΔODC có
N,K lần lượt là trung điểm của OC,OD
=>NK là đường trung bình của ΔODC
=>NK//DC và NK=DC/2
NK//DC
AB//DC
Do đó: NK//AB
\(NK=\dfrac{DC}{2}\)
\(AB=DC\)
\(AM=\dfrac{AB}{2}\)
Do đó: NK=AM
Xét tứ giác AMNK có
AM//NK
AM=NK
Do đó: AMNK là hình bình hành
=>AK//MN
KN//DC
DC\(\perp\)AD
Do đó: NK\(\perp\)AD
Xét ΔADN có
NK,DO là đường cao
NK cắt DO tại K
Do đó: K là trực tâm của ΔADN
=>AK\(\perp\)DN
mà AK//MN
nên DN\(\perp\)MN
=>\(\widehat{DNM}=90^0\)