Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho 3 số thực dương a;b;c thỏa mãn : a+ b + c = 1 . CMR
\(\frac{a+1}{a+b+c}+\frac{b+1}{b+ac}+\frac{c+1}{c+ab}\ge9\)Dấu " = " xay ra khi nào
Vì AP//DN nên theo định lí Ta-lét ta có
\(\frac{CN}{BK}=\frac{CQ}{QK}=\frac{CD}{KP}\)
\(\Rightarrow CN.KP=CD.BK\)
a: Sửa đề: AD=6cm
BC=AD=6cm
CD=AB=8cm
BD=căn 6^2+8^2=10cm
Xét ΔBCD vuông tại C có sin DBC=DC/BD=8/10=4/5
nên góc DBC=53 độ
=>góc BDC=37 độ
b: CH=6*8/10=4,8cm
BH=BC^2/BD=6^2/10=3,6cm
a: Xét tứ giác ADBK có
M là trung điểm chung của AB và DK
=>ADBK là hình bình hành
=>AK=DB
mà DB=AC(ABCD là hình chữ nhật)
nên AK=AC
=>ΔAKC cân tại A
b: Xét ΔIAM có IE là phân giác
nên \(\dfrac{ME}{EA}=\dfrac{IM}{IA}\)
mà IA=IK
nên \(\dfrac{ME}{EA}=\dfrac{IM}{IK}\)
Xét ΔIMK có IF là phân giác
nên \(\dfrac{IM}{IK}=\dfrac{MF}{FK}\)
=>\(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)
Xét ΔMAK có \(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)
nên EF//AK
Ta có: EF//AK
AK//BD(AKBD là hình bình hành)
Do đó: EF//BD
A B C D N M I O
Xét tg vuông ADM và tg vuông DCN có
AM=DN (gt)
AD=CD (cạnh hình vuông)
=> tg ADM = tg DCN (hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{ADM}=\widehat{DCN}\)
b/
Ta có
BM=AB-AM
AN=AD-DN
AB=CD (cạnh hình vuông)
AM=DN (gt)
=> AN=BM (1)
AC=BD (đường chéo hình vuông) (2)
\(\widehat{CAN}=\widehat{BDM}=45^o\) (trong hình vuông đường chéo là đường phân giác của hai góc đối nhau) (3)
Từ (1) (2) (3) => tg ACN = tg BDM (c.g.c)
\(\Rightarrow\widehat{ACN}=\widehat{BDM}\) => CDIO là tứ giác nội tiếp
\(\Rightarrow\widehat{OIC}=\widehat{BDC}=45^o\) (góc nội tiếp cùng chắn cung OC) (4)
Ta có
\(\widehat{ADM}=\widehat{DCN}\) (cmt)
Xét tg vuông CDN có
\(\widehat{DCN}+\widehat{DNC}=90^o\Rightarrow\widehat{ADM}+\widehat{DNC}=90^o\Rightarrow\widehat{DIN}=90^o\)
\(\Rightarrow\widehat{MIC}=90^o\) (5)
Từ (4) và (5) \(\Rightarrow\widehat{OIM}=45^o\) (6)
Từ (4) và (6) \(\Rightarrow\widehat{OIC}=\widehat{OIM}=45^o\) => OI là phân giác của \(\widehat{MIC}\))