K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2023

Để giải bài toán này, ta cần sử dụng các kiến thức về hình học phẳng và đường thẳng.

Trước tiên, ta xác định tọa độ của điểm A. Vì AB là đường chéo của hình vuông nên ta có thể sử dụng định lí Pythagoras trong tam giác vuông ABD để tính độ dài cạnh của hình vuông, rồi suy ra tọa độ của điểm A.

Với AB: x-y+4=0, ta có hai điểm A thỏa mãn điều kiện này: A(x,y)=(y-4,y) và A'(x',y')=(x'+4,x'). Vì độ dài cạnh của hình vuông là xác định nên ta chỉ cần tìm được một điểm trên cạnh AB, chẳng hạn A, để suy ra tọa độ của các điểm còn lại.

Giả sử ta chọn A(y-4,y), ta có

Tọa độ của B là (y, y-4) (vì AB là đường chéo)Tọa độ của C là (y-4, -y) (vì ABCD là hình vuông)Tọa độ của D là (-y, y-4) (vì ABCD là hình vuông)

Ta dễ dàng tính được tọa độ của M và N:

Tọa độ của M là ((y+y-4)/2, (y-4)/2) = (y-2, -2)Tọa độ của N là (x, 2x+6) với điểm N thuộc đường thẳng d: x-2y-6=0 và N có hoành độ dương. Thay x-2y-6=0 vào ta có x=2y+6, suy ra tọa độ của N là (2y+6, 2x+6) = (2y+6, 4y+18)

Tiếp theo, ta tính khoảng cách d giữa đường thẳng AB và điểm H. Theo công thức, ta có d(H, AB) = |Ax + By + C| / sqrt(A^2 + B^2), với (A, B, C) là vector pháp tuyến của đường thẳng AB.

Vì AB: x-y+4=0 nên vector pháp tuyến của AB là (1, -1). Điểm H là giao điểm của hai đường thẳng AM và BN nên ta dễ dàng tính được tọa độ của H là ((y-2)/2, (y-4)/2). Thay vào công thức tính khoảng cách ta có d(H, AB) = |y-2 + 2y-4 + 4| / sqrt(1+1) = 8sqrt(2)/2 = 4sqrt(2).

Vậy, tọa độ các đỉnh của hình vuông là:

A(y-4, y)B(y, y-4)C(y-4, -y)D(-y, y-4)

Và tọa độ của M và N là:

M(y-2, -2)N(2y+6, 4y+18) với y > 0

Khoảng cách giữa đường thẳng AB và điểm H là 4sqrt(2).

5 tháng 5 2023

Để giải bài toán này, ta thực hiện các bước sau đây:

Bước 1: Tìm tọa độ của điểm A. Vì hình vuông ABCD là hình vuông nên ta có AB=BC=CD=DA. Vậy, ta có tọa độ điểm A là A(0;6).

Bước 2: Tìm tọa độ của điểm C. Vì M là trung điểm của BC và BM=MC nên ta có tọa độ điểm C là C(2;2).

Bước 3: Tìm tọa độ của điểm D. Vì hình vuông ABCD là hình vuông nên ta có AD vuông góc AB và AD=AB. Vậy, tọa độ điểm D là D(-6;4).

Bước 4: Tìm tọa độ của điểm N. Điểm N có tung độ âm nên nằm dưới trục hoành. Ta cần tìm tọa độ của điểm N bằng cách giải hệ phương trình hợp là của đường thẳng d:x-2y-6=0 và đường thẳng CD: y = -x + 4.

Giải hệ phương trình ta có:

x - 2y = -6y = -x + 4

Thay y của phương trình 2 vào phương trình 1 ta có:

x - 2(-x + 4) = -6 <=> x = 2

Thay x = 2 vào phương trình 2 ta có: y = -2 + 4 <=> y = 2

Vậy, tọa đó điểm N là N(2;2).

Bước 5: Tìm tọa độ của điểm B. Vì B là đỉnh của hình vuông ABCD và biết tọa độ của điểm A và C nên ta có tọa độ điểm B là B(-2;6).

Bước 6: Tìm tọa độ của điểm E. Ta biết E thuộc đường thẳng AM nên ta có phương trình đường thẳng AM. Ta có tam giác AEM vuông tại E với AM là đường cao. Vậy, ta sử dụng định lý Pythagoras để tìm tọa độ của E.

Đường thẳng AM có hệ số góc bằng: m = (y_A-y_M)/(x_A-x_M) = (6-3)/(0-2) = -1.5

Vậy, phương trình đường thẳng AM là: y = -1.5x + 6 Điểm E thuộc đường thẳng AM nên thay x của E vào phương trình đường thẳng AM ta có: 3 = -1.5x + 6 <=> x = 2

Thay x của E vào phương thức đường thẳng AM ta có: y = -1.5*2 + 6 <=> y = 3

Vậy, tọa độ điểm E là E(2;3).

Bước 7: Tóm tắt kết quả. Tọa độ các đỉnh hình vuông là: A(0;6), B(-2;6), C(2;2), D(-6;4) Đường thẳng AM có phương trình là: y = -1.5x + 6 Tọa độ của điểm E là E(2;3) Điểm N có tọa độ là N(2;2)

5 tháng 5 2023

Để tìm tọa độ đỉnh B và điểm M, ta có thể sử dụng các thông tin sau:

M là trung điểm của BC, nghĩa là tọa độ của M bằng trung bình cộng của tọa độ của B và C.N là trung điểm của CD, nghĩa là tọa độ của C là (2, -2).Do ABCD là hình vuông nên độ dài các cạnh bằng nhau, suy ra AB = CD = BC = AD.Vì M có hoành độ nguyên, nên tọa độ của B và C cũng phải có hoành độ nguyên.

Từ đó, ta có thể tìm tọa độ của B như sau:

Đặt tọa độ của B là (x, y).Do AB = BC, suy ra x - 1 = 1 - y, hay x + y = 2.Do AB = CD = 2, suy ra tọa độ của A là (x - 1, y + 1) và tọa độ của D là (x + 1, y - 1).Vì đường thẳng AM có phương trình x+2y-2=0, nên điểm A nằm trên đường thẳng đó, tức là x - 2y + 2 = 0.Từ hai phương trình trên, ta giải hệ: x + y = 2 x - 2y + 2 = 0Giải hệ này ta được x = 2 và y = 0, suy ra tọa độ của B là (2, 0).

Tiếp theo, ta sẽ tìm tọa độ của M:

Đặt tọa độ của M là (p, q).Do M là trung điểm của BC, suy ra p = (x + r)/2 và q = (y + s)/2, với r, s lần lượt là hoành độ và tung độ của C.Ta đã biết tọa độ của C là (2, -2), suy ra r = 2 và s = -4.Từ AM có phương trình x+2y-2=0, suy ra p + 2q - 2 = 0.Với hoành độ nguyên của M, ta có thể thử các giá trị p = 1, 2, 3, ... và tính q tương ứng.Khi p = 2, ta có p + 2q - 2 = 2q = 2, suy ra q = 1.Vậy tọa độ của M là (2, 1).<đủ chi tiết luôn nhó>
9 tháng 4 2016

B A K H C E I D

Ta có \(\widehat{AHC}=\widehat{AEC}=90^0\) nên 4 điểm A, H, C, E cùng thuộc đường tròn đường kính AC.

Gọi I là giao điểm của AC và BD

Ta có \(\widehat{HIE}=2\widehat{HAE}=2\left(180^0-\widehat{BCD}\right)\)

Các tứ giác AKED, AKHB nội tiếp nên \(\widehat{EKD}=\widehat{EAD}\) và \(\widehat{BKH}=\widehat{BAH}\)

Do đó \(\widehat{HKE}=180^0-\widehat{AKD}-\overrightarrow{BKH}=180^0-\overrightarrow{EAD}-\overrightarrow{BAH}=2\overrightarrow{HAE}=2\left(180^0-\overrightarrow{BCD}\right)=\overrightarrow{HIE}\)

Vậy tứ giác HKIE nội tiếp. Do đó I thuộc đường tròn (C) ngoại tiếp tam giác HKE

- Gọi \(C\left(c;c-3\right)\in d\left(c>0\right)\Rightarrow I\left(\frac{c-2}{2};\frac{c-4}{2}\right)\)

Do I thuộc (C) nên có phương trình :

\(c^2-c-2=0\Leftrightarrow c=2\) V c=-1 (loại c=-1) Suy ra \(C\left(2;-1\right);I\left(0;-1\right)\)

- Điểm E, H nằm trên đường tròn đường kính AC và đường tròn (C) nên tọa độ thỏa mãn hệ phương trình :

\(\begin{cases}x^2+y^2+x+4y+3=0\\x^2+\left(y+1\right)^2=4\end{cases}\) \(\Leftrightarrow\begin{cases}x=0;y=-3\\x=-\frac{8}{5};y=-\frac{11}{2}\end{cases}\)

- Vì H có hoành độ âm nên \(H\left(-\frac{8}{5};-\frac{11}{5}\right);E\left(0;-3\right)\) Suy ra \(AB:x-y+1=0;BC:x-3y-5=0\)

Tọa độ B thỏa mãn \(\begin{cases}x-y+1=0\\x-3y-5=0\end{cases}\) \(\Leftrightarrow B\left(-4;-3\right)\Rightarrow\overrightarrow{BA}=\left(2;2\right);\overrightarrow{BC}=\left(6;2\right)\Rightarrow\overrightarrow{BA}.\overrightarrow{BC}=16>0\)

Vì \(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow D\left(4;1\right)\)

Vậy \(B\left(-4;-3\right);C\left(2;-1\right);D\left(4;1\right)\)

24 tháng 7 2016

cho mình hỏi vì sao góc HIE = 2 HAE

 

5 tháng 6 2016

C ƠI HÌNH NHƯ BÀI 1 SAI ĐỀ BÀI R

8 tháng 4 2016

\(d\left(A\left(P\right)\right)=\frac{\left|2\left(-2\right)-2.1+1.5-1\right|}{\sqrt{2^2+\left(-2\right)^2+1^2}}=\frac{2}{3}\)

(P) có vectơ pháp tuyến là \(\overrightarrow{n_p}=\left(2;-2;1\right);\)

d có vectơ pháp tuyến là \(\overrightarrow{u_d}=\left(2;3;1\right);\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(-5;0;10\right)\)

Theo giả thiết suy ra (Q) nhận \(\overrightarrow{n}=-\frac{1}{5}\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(1;0;-2\right)\) làm vectơ pháp tuyến 

Suy ra \(\left(Q\right):x-2z+12=0\)

 
21 tháng 6 2016

%255B2015%255D%2BDe%2B94%2BCau%2B7.JPG

Gọi I là trung điểm của DH. Dễ thấy tứ giác ABMI là hình bình hành, suy ra I là trực tâm của tam giác ADM. Từ đó suy ra BM vuông góc với DM

 

Phương trình BM:
 
\(\widehat{DM}=\left(\frac{22}{5}-2;\frac{14}{5}-2\right)=\left(\frac{12}{5};\frac{4}{5}\right)\)//(3;1)
(BM):\(3\left(x+\frac{22}{5}\right)+1\left(y-\frac{14}{5}\right)=0\)(BM):3x+y16=0
Tọa độ B là nghiệm hệ
\(\begin{cases}3-2y+4=0\\3x+y-16=0\end{cases}\)<=> \(\begin{cases}x=4\\y=4\end{cases}\)=>B(4;4)
Gọi K là giao điểm của BD và AC. Ta có  \(\overrightarrow{KB}=-\frac{1}{2}\overrightarrow{KD}\)
Tọa độ K
\(\begin{cases}x_K=\frac{4+\frac{1}{2}.2}{1+\frac{1}{2}}=\frac{10}{3}\\y_K=\frac{4+\frac{1}{2}.2}{1+\frac{1}{2}}=\frac{10}{3}\end{cases}\)=> K(\(\frac{10}{3};\frac{10}{3}\))
Phương trình AC:

\(\overrightarrow{KM}=\left(\frac{16}{15};-\frac{8}{15}\right)\)//(2;1)
(AC):x+2y10=0
Phương trình DI:
(DI):2(x2)(y2)=0(DI):2xy2=0
Tọa độ H là nghiệm hệ
\(\begin{cases}x+2y-10=0\\2x-y-2=0\end{cases}\)<=>\(\begin{cases}x=\frac{14}{5}\\y=\frac{18}{5}\end{cases}\)
Tọa độ điểm CC(6;2)
Ta có
\(\overrightarrow{BA}=\frac{1}{2}\overrightarrow{CD}\),<=>\(\begin{cases}x_A=\frac{1}{2}\left(2-6\right)+4=2\\y_A=\frac{1}{2}\left(2-2\right)+4=4\end{cases}\)A(2;4)
21 tháng 3 2021

undefined

1/Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD. Đỉnh B thuộc đường thẳng d1: 2x-y+2=0, đỉnh C thuộc đường thẳng d2: x-y-5=0. Gọi H là hình chiếu của B xuống AC, biết M(\(\dfrac{9}{5}\);\(\dfrac{2}{5}\)), K(9;2) lần lượt là trung điểm của AH và CD Tìm tọa độ các đỉnh hình chữ nhật ABCD, biết điểm C có hoành độ lờn hơn 4 2/Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, biết...
Đọc tiếp

1/Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD. Đỉnh B thuộc đường thẳng d1: 2x-y+2=0, đỉnh C thuộc đường thẳng d2: x-y-5=0. Gọi H là hình chiếu của B xuống AC, biết M(\(\dfrac{9}{5}\);\(\dfrac{2}{5}\)), K(9;2) lần lượt là trung điểm của AH và CD Tìm tọa độ các đỉnh hình chữ nhật ABCD, biết điểm C có hoành độ lờn hơn 4

2/Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, biết B(\(\dfrac{1}{2}\);1). Đường tròn nội tiếp tam giác ABC tieepa xúc với BC, CA, AB lần lượt tại D,E,F. Biết điểm D(3;1). đường thẳng È:y-3=0. Tìm tọa độ điểm A biết A có tung độ dương

3/ Trong mặt phẳng tọa độ Oxy, choa tam giác ABC cân tại A , D là trung điểm AB . Biết rằng I(\(\dfrac{11}{3}\);\(\dfrac{5}{3}\)); E(\(\dfrac{13}{3}\);\(\dfrac{5}{3}\)) lần lượt là tâm đường tròn ngoại tiếp tam giác ABC , trọng tâm tam giác ADC, các diểm M(3;-1);N(-3;0) lần lượt thuộc các đường thẳng DC, AB.Tìm tọa độ các điểm A,B,C, biết A có tung độ dương

4/ Trong mặt phẳng tọa độ Oxy, hãy viết phương trình các cạnh của tam giác ABC biết trực tâm H(1;0) , chân đường cao hạ từ đinh B là K(0;2), trung điểm cạnh AB là M (3;1)

5/ Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông tại C có phân giác trong AD với D (\(\dfrac{7}{2}\);-\(\dfrac{7}{2}\)) thuộc BC . Gọi E,F là hai điểm làn lượt thuộc các cạnh AB, AC sao cho AE=AF. Đường thẳng EF cắt BC taị K.Biết E(\(\dfrac{3}{2}\);-\(\dfrac{5}{2}\)), F có hoành độ nhỏ hơn 3 và phương trình đường thẳng AK : x-2y-3=0. Viết phương trình của các cạnh tam giác ABC.

6/ Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x-1)2+(y-1)2 + 25 và các điểm A (7;9), B(0;8). Tìm tọa độ điểm M thuộc (c) sao cho biểu thức P= MA+2MB min

7/ Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có góc BAC =120O , đường cao BH: \(\sqrt{3}\)x+y-2=0. Trung điểm của cạnh BC là M( \(\sqrt{3}\);\(\dfrac{1}{2}\)) và trực tâm H(0;2). Tìm tọa độ các đỉnh B,C của tam giác ABC

8/ Trong mặt phẳng tọa độ Oxy, CHO (C1); x2 + y2-6x+8y+23=0, (C2) : x2 + y2+12x-10y+53=0 và (d) : x-y-1=0. Viết phương trình đường trong (C) có tâm thuộc (d), tiếp xúc trong với (C1), và tiếp xúc ngoài với (C2)

0