Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔBDC có
E là trung điểm của BD(BE=ED; B,E,D thẳng hàng)
M là trung điểm của BC(gt)
Do đó: EM là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)
⇒⇒ME//CD(Định lí 2 về đường trung bình của tam giác)
hay ME//ID
Xét ΔAEM có
D là trung điểm của AE(AD=DE; A,D,E thẳng hàng)
DI//EM(cmt)
Do đó: I là trung điểm của AM(Định lí 1 về đường trung bình của tam giác)
nên AI=IM(đpcm)
HT
\(\text{GIẢI :}\)
A B C H D O I x y
a) Xét \(\diamond\text{ACDO}\) có \(\widehat{\text{OAC}}=\widehat{\text{ACD}}=\widehat{\text{CDO}}\text{ }\left(=90^0\right)\)
\(\Rightarrow\text{ }\diamond\text{ACDO}\) là hình chữ nhật.
mà \(AC=CD\text{ }\Rightarrow\text{ }\diamond\text{ACDO}\) là hình vuông.
b) Xét ABC , có : \(\widehat{ACB}=90^0-\widehat{ABC}\) (1)
Xét ABH , có : \(\widehat{BAH}=90^{\text{o}}-\widehat{ABH}\)
hay \(\widehat{BAH}=90^{\text{o}}-\widehat{ABC}\) (2)
Từ (1) và (2) \(\Rightarrow\text{ }\widehat{BAH}=\widehat{ACB}\).
Xét \(\bigtriangleup\text{ABC và }\bigtriangleup\text{OIA}\), có :
\(\widehat{IOA}=\widehat{BAC}\text{ }\left(90^{\text{o}}\right)\)
\(AO=AC\) (vì \(\diamond\text{ACDO}\) là hình vuông)
\(\widehat{IAO}=\widehat{ACB}\) (vì \(\widehat{BAH}=\widehat{ACB}\), \(\widehat{IAO}\) và \(\widehat{BAH}\) đối đỉnh)
\(\Rightarrow\bigtriangleup\text{ABC}=\bigtriangleup\text{OIA}\) (g.c.g)
\(\Rightarrow\text{ IA = BC}\) (2 cạnh tương ứng) (đpcm).