Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAN vuông tại B và ΔADM vuông tại A có
BA=AD
BN=AM
=>ΔBAN=ΔADM
=>góc BAN=góc ADM
=>góc BAN+góc AMP=90 độ
=>AN vuông góc MD tại P
=>ΔAPM vuông tại P
b: AM=4/2=2cm
DM=căn 2^2+4^2=2*căn 5(cm)
AP=2*4/2*căn 5=4/căn 5(cm)
PM=AM^2/DM=2^2/2*căn 5=2/căn 5(cm)
S APM=1/2*AP*PM=1/2*8/5=4/5(cm2)
Xét 2 tam giác vuông BMC và CND có :
BM=CN (bằng nửa cạnh hình vuông); BC=CD
=> Tam giác BMC = Tam giác CND (c.g.c)
=> Góc BCM = Góc CDN
mà Góc BCM + góc DCM = 90 độ
=> Góc CDN + Góc DCN = 90 độ
=> Tam giác CDI vuông tại I
=> CM vuông góc với DN
Gọi P là trung điểm của CD, AP cắt DN tại H
Ta có PC= 1/2 DC
mà AM = 1/2 AB
lại có AB=CD (vì ABCD là hình vuông)
=> AM=PC
mặt khác AM // PC (vì AB // CD)
=> AMCP là hình bình hành
=> AP // CM
mà CM vuông góc với DN (cmt)
=> AP vuông góc với DN tại H
Tam giác CDI có CP= DP, PH // CI (vì AP // CM)
=> DH=HI
Tam giác ADI có AH là đường cao (vì AH vuông góc với DI)
AH là trung tuyến (vì DH= HI)
=> Tam giác ADI cân tại A
=> AI = AD
Câu a đây Đệ Ngô!
a. CM: AM = BM = BN = NC (1/2AB = 1/2BC)
Cm: Tam giác MBC = tam giác NCD (c-g-c)
=> góc BMC = góc CND
Mà tam giác BMC vuông tại B
=> BMC + BCM = 900
=> CND + BCM = 900
=> Tam giác CIN vuông tại I.
Hình bạn tự vẽ chắc dc rùi nhé mình chỉ giải thôi
Bài làm
a/ \(\Delta\)ABC cân tại A có AM là đường trung tuyến ứng với cạnh BC ( M là trung điểm BC )
Nên Am cũng là đường cao \(\Rightarrow\)AM \(⊥\)BC
vì M là trung điểm của BC \(\Rightarrow\)BM= MC = \(\frac{1}{2}BC=\frac{1}{2}.6=3cm\)
Xét tam giác AMB vuông tại M có:
AM2 + BM2 = AB2
AM2 + 32 = 52
AM2 + 9 = 25
AM2 = 25 - 9 =16
\(\Rightarrow\)AM= \(\sqrt{16}=4\)
Vậy S ABC = \(\frac{1}{2}AM.BC\)= \(\frac{1}{2}4.6=12\)
b/ Xét tứ giác AMCN có :
OA=OC (gt)
OM=ON ( N đối xứng với M qua O )
\(\Rightarrow\)Tứ giác AMCN là hình bình hành
Mà AM \(⊥\)MC ( chứng minh ở câu a ) \(\Rightarrow\)\(\widehat{AMC}\)= 90 0
Hình bình hành AMCN có \(\widehat{AMC}=90\)nên AMCN là hình chữ nhật
C/ Để AMNC là hình vuông thì AM phải bằng MC ( Vì theo lý thuyết hcn có 2 cạnh kề bằng nhau là hình vuông )
Nếu tam giác ABC vuông cân tại A thì có :
AM là đường trung tuyến ứng với cạnh huyền BC nên BM = AM = MC
Vậy để tứ giác AMCN là hình vuông thì tam giác ABC phải là tam giác vuông cân tại A