Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
## Bài 1:
**a) Chứng minh rằng các tam giác AMQ, ANP vuông cân.**
* **Tam giác AMQ:**
* Ta có: $\widehat{MAQ} = 90^\circ$ (do d vuông góc với AM)
* $\widehat{AMQ} = \widehat{ABM}$ (cùng phụ với $\widehat{AMB}$)
* Mà $\widehat{ABM} = 45^\circ$ (do ABCD là hình vuông)
* Nên $\widehat{AMQ} = 45^\circ$
* Vậy tam giác AMQ vuông cân tại A.
* **Tam giác ANP:**
* Ta có: $\widehat{NAP} = 90^\circ$ (do d vuông góc với AM)
* $\widehat{ANP} = \widehat{ADN}$ (cùng phụ với $\widehat{AND}$)
* Mà $\widehat{ADN} = 45^\circ$ (do ABCD là hình vuông)
* Nên $\widehat{ANP} = 45^\circ$
* Vậy tam giác ANP vuông cân tại A.
**b) Gọi giao điểm của QM và NP là R. Gọi I, K là trung điểm của đoạn thẳng MQ, PN. Chứng minh rằng AIKR là hình chữ nhật**
* **Chứng minh AIKR là hình bình hành:**
* Ta có: I là trung điểm của MQ, K là trung điểm của PN.
* Nên IK là đường trung bình của hình thang MNPQ.
* Do đó IK // MN // PQ.
* Mà AI // KR (do AI là đường trung bình của tam giác AMQ, KR là đường trung bình của tam giác ANP)
* Vậy AIKR là hình bình hành.
* **Chứng minh AIKR là hình chữ nhật:**
* Ta có: $\widehat{IAK} = 90^\circ$ (do AI // KR và $\widehat{IAK}$ là góc vuông)
* Vậy AIKR là hình chữ nhật.
**c) Chứng minh rằng bốn điểm K,B,I,D thẳng hàng**
* **Chứng minh KB // ID:**
* Ta có: KB là đường trung bình của tam giác BCP, ID là đường trung bình của tam giác DQN.
* Nên KB // CP // DQ // ID.
* Vậy KB // ID.
* **Chứng minh KB = ID:**
* Ta có: KB = 1/2 CP, ID = 1/2 DQ.
* Mà CP = DQ (do ABCD là hình vuông)
* Nên KB = ID.
* **Kết luận:**
* Do KB // ID và KB = ID nên KBID là hình bình hành.
* Mà $\widehat{KBI} = 90^\circ$ (do KB // CP và $\widehat{KBI}$ là góc vuông)
* Vậy KBID là hình chữ nhật.
* Do đó bốn điểm K,B,I,D thẳng hàng.
## Bài 2:
**a) Chứng minh rằng BF = CE; BF ⊥ CE**
* **Chứng minh BF = CE:**
* Ta có: ABDE và ACGF là hình vuông.
* Nên AB = AE, AC = AF.
* Do đó BF = BC + CF = AB + AC = AE + AF = CE.
* **Chứng minh BF ⊥ CE:**
* Ta có: $\widehat{ABF} = 90^\circ$ (do ABDE là hình vuông)
* $\widehat{ACE} = 90^\circ$ (do ACGF là hình vuông)
* Nên $\widehat{ABF} + \widehat{ACE} = 180^\circ$.
* Do đó BF ⊥ CE.
**b) Tam giác MO O1 2 là tam giác vuông cân**
* **Chứng minh MO O1 2 là tam giác vuông:**
* Ta có: O1 là tâm hình vuông ABDE, O2 là tâm hình vuông ACGF.
* Nên O1O2 là đường trung trực của đoạn thẳng BC.
* Do đó MO1 = MO2.
* Mà $\widehat{MO1O2} = 90^\circ$ (do O1O2 là đường trung trực của BC)
* Vậy tam giác MO O1 2 là tam giác vuông tại O.
* **Chứng minh MO O1 2 là tam giác cân:**
* Ta có: MO1 = MO2 (chứng minh trên)
* Vậy tam giác MO O1 2 là tam giác cân tại M.
* **Kết luận:**
* Tam giác MO O1 2 là tam giác vuông cân tại O.
A B C D Q P R S H M N
a) Ta có: ^BAR+^DAR=^BAD=900 (1)
^DAQ+^DAR=900 (Do PQ vuông góc AR) (2)
Từ (1) và (2) => ^BAR=^DAQ
Xét \(\Delta\)ABR và \(\Delta\)ADQ:
^ABR=^ADQ=900
AB=AD => \(\Delta\)ABR=\(\Delta\)ADQ (g.c.g)
^BAR=^DAQ
=> AR=AQ (2 cạnh tương ứng) . Xét tam giác AQR:
AR=AQ, ^QAR=900 => \(\Delta\)AQR là tam giác vuông cân tại A.
Tương tự: \(\Delta\)ADS=\(\Delta\)ABP (g.c.g)
=> AS=AP, ^PAS=900 => \(\Delta\)APS vuông cân tại A.
b) \(\Delta\)AQR vuông cân tại A, M là trung điểm của QR => AM vuông góc QR (3)
Tương tự: AN vuông góc với PS (4)
Lại có: AM là phân giác của ^QAR (Do \(\Delta\)AQR...) => ^MAR=450
AN là phân giác của ^PAS => ^SAN=450
=> ^MAR+^SAN=^MAN=900 (5)
Từ (3), (4) và (5) => Tứ giác AMHN là hình chữ nhật (đpcm)
c) Vì tứ giác AMHN là hcn => ^MHN=900 => MH vuông góc với PS hay QH vuông góc với PS
Xét \(\Delta\)SQR: PQ vuông góc RS tại A, PS vuông góc QR tại H
=> P là trực tâm của tam giác SQR (đpcm).
d) Ta thấy \(\Delta\)PCS vuông tại C (PC vuông góc QS), N là trung điểm của PS => CN=PN=SN.
Lại có: Tam giác APS vuông cân tại A, N là trung điểm PS => AN=PN=SN
=> CN=AN => N nằm trên đường trung trực của AC (6)
Tương tự: Tam giác QCR vuông tại C, M là trung điểm QR => CM=QM=RM
Tam giác AQR vuông cân A, M là trung điểm QR => AM=QM=RM
=> CM=AM => M nằm trên đường trung trực của AC (7)
Từ (6) và (7) => MN là trung trực của AC (đpcm). (8)
e) Xét hình vuông ABCD: 2 đường chéo AC và BD vuông góc với nhau tại trung điểm mỗi đường
=> BD là trung trực của AC (9)
Từ (8) và (9) => M;B;N;D thẳng hàng (đpcm).
Có : góc BAM + góc MAD = 90 độ
Lại có : góc MAD + góc DAQ = 90 độ
=> góc BAM = góc DAQ
=> Tam giác ADQ = tam giác ABM ( cgv - gn )
=> AM=AQ => tam giác AMQ cân tại A
Mà tam giác AMQ vuông tại A => tam giác AMQ vuông cân tại A
Tương tự : cm tam giác PAB = tam giác NAD ( cgv - gn )
=> PA = NA => tam giác ANP cân tại A
Mà tam giác ANP vuông tại A nên tam giác ANP vuông cân tại A
Tk mk nha
Xét tam giác CNP vuông tại C có CE là trung tuyến => CE = NP/2
Tương tự : EA = NP/2
=> CE = EA
=> E thuộc trung trực của AC
Tương tự : cm AF = CF = QM/2
=> F thuộc trung trực AC
Mà tứ giác ABCD là hình vuông nên BD chính là trung trực của AC
=> B;D;E;F thẳng hàng
Tk mk nha
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành