K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

bạn tự vẽ hình nhé 

xét có tam giácADF=tam giác ABE\(\Rightarrow\)AE=AF có SAFM=AF.AM/2=AD.FM/2\(\Rightarrow\)AF.AM=AD.FM\(\Rightarrow\left(AF.AM\right)^2=\left(AD.FM\right)^2\)\(\Rightarrow\frac{AD^2.FM^2}{AM^2.AF^2}=1\)\(\Rightarrow\frac{AD^2\left(AE^2+AM^2\right)}{AE^2.AM^2}=1\)(Theo định lý pytago và AE=AF)

\(\Rightarrow\frac{1}{AD^2}=\frac{AE^2+AM^2}{AE^2.AM^2}=\frac{1}{AE^2}+\frac{1}{AF^2}\)MÀ AD ko đổi \(\Rightarrow\frac{1}{AE^2}+\frac{1}{AM^2}\)ko phụ thuộc vào vị trí của E trên BC

28 tháng 3 2020

a, Ta có: BAE + DAE = BAD  => BAE + DAE = 90o   

và IAD + DAE = IAE  => IAD + DAE = 90o 

=> BAE = IAD

Xét △ABE vuông tại B và △ADI vuông tại D

Có: AB = AD (ABCD là hình vuông)

      BAE = DAI (cmt)

=> △ABE = △ADI (cgv-gnk)

=> AE = AI (2 cạnh tương ứng)

=> △AEI cân tại A

Mà IAE = 90o

=> △AEI vuông cân tại A

=> AEI = 45o

b, Xét △ABE có: AB2 + BE2 = AE2 (định lý Pytago)

Vì AB // CD (ABCD là hình vuông) => \(\frac{AE}{EF}=\frac{BE}{EC}\)(định lý Thales)  \(\Rightarrow\frac{AE}{AF}=\frac{BE}{BC}\)

\(\Rightarrow\frac{AE}{AF}=\frac{BE}{AB}\) (BC = AB <= ABCD là hình vuông )\(\Rightarrow AF=\frac{AE.AB}{BE}\) 

Ta có: \(\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AE^2}+\frac{1}{\left(\frac{AE.AB}{BE}\right)^2}=\frac{1}{AE^2}+\frac{BE^2}{AE^2.AB^2}=\frac{AB^2}{AE^2.AB^2}+\frac{BE^2}{AE^2.AB^2}\)

\(=\frac{AB^2+BE^2}{AE^2.AB^2}=\frac{AE^2}{AE^2.AB^2}=\frac{1}{AB^2}\) (đpcm)

c, Xét △ABE vuông tại B có: AE > AB (quan hệ giữa cạnh huyền và cạnh góc vuông) => AE2 > AB \(\Rightarrow\frac{1}{2}.AE^2>\frac{1}{2}.AB^2\)

\(\Rightarrow\frac{1}{2}.AE.AI>\frac{1}{2}.a^2\)\(\Rightarrow S_{\text{△}AEI}>\frac{1}{2}a^2\)

20 tháng 2 2020

a, góc FAD + góc DAE = 90 

góc BAE  + góc DAE = 90 

=> góc FAD = góc BAE 

xét tam giác ADF và tam giác ABE có : góc ADF = góc ABE = 90

AD = AB do ABCD là hình vuông (gt)

=> tam giác ADF = tam giác ABE (cgv-gnk)

=> AF = AE (đn)

=> tam giác AFE cân tại A (đn)

góc AFE = 90 (gT)

=> tam giác AFE vuông cân (dh)

b, tam giác AFE cân tại A (câu a)

AI Là trung tuyến của tam giác AFE (gt)

=> AI _|_ FE (đl)                                                                                 (1)

EG // AB (gt)

AB // DC do ABCD là hình vuông (gT)

=> EG // FK                                    (2)

=> góc GEI = góc IFK  (slt)

xét tam giác GIE và tam giác KIF có : góc GIE = góc KIF (đối đỉnh)

FI = IE do I là trđ của FE (gt)

=> tam giác GIE = tam giác KIF (g-c-g)

=> GE = FK (3)

(2)(3) => GEFK là hình bình hành và (1)

=> GEFK là hình thoi (dh)

10 tháng 4 2018

Câu d, là câu riêng luôn rồi nhé 

Đặt các cạnh hình vuông là a, BM= BE= x 

\(\Rightarrow S_{MBE}=\frac{x^2}{2}\)

\(S_{AMD}=S_{CED}=\frac{a\left(a-x\right)}{2}\)

Ta có: \(S_{DEN}=a^2-\left(a\left(a-x\right)+\frac{x^2}{2}\right)\)

\(=\frac{2a^2-2a^2+2ax-x^2}{2}\)

\(=\frac{a^2-\left(a^2-2ax+x^2\right)}{2}\)

\(=\frac{a^2}{2}-\frac{\left(a-x\right)^2}{2}\le\frac{a^2}{2}\)

Dấu "=" xảy ra khi: a=x <=> BC=BE <=> E trùng C 

Quá trình mình làm chỉ tắt những ý chính, bạn làm bài cần làm đầy đủ hơn!!! 

30 tháng 3 2016

Bài này ngó qua ngó lại thì không khó lắm. Tối giải nha.