\(\dfrac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2019

a,\(\Delta ABM\infty\Delta NDA\left(g.g\right)\Rightarrow\frac{AB}{ND}=\frac{BM}{DA}\Rightarrow AB^2=BM.DN\) (vì AB = AD)

b, Ta có: \(\frac{NM}{NA}=\frac{MC}{AD}\Rightarrow\frac{AD}{AN}=\frac{MC}{MN}\)

\(\frac{CN}{AB}=\frac{MN}{AM}\Rightarrow\frac{CN}{AD}=\frac{MN}{AM}\Rightarrow\frac{AD}{AM}=\frac{CN}{MN}\)

Vậy \(\left(\frac{AD}{AM}\right)^2+\left(\frac{AD}{AN}\right)^2=\left(\frac{CN}{MN}\right)^2+\left(\frac{MC}{MN}\right)^2=\frac{MC^2+CN^2}{MN^2}=1\)

\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)

27 tháng 6 2021
Câu trả lời bằng hình

Bài tập Tất cả

10 tháng 7 2021

thanks nhiều

Y
13 tháng 2 2019

1. A B C D M N K E F

a) + AN // CD \(\Rightarrow\dfrac{DM}{MN}=\dfrac{MC}{MA}\)

+ AD // CK \(\Rightarrow\dfrac{MK}{MD}=\dfrac{MC}{MA}\)

\(\Rightarrow\dfrac{MD}{MN}=\dfrac{MK}{MD}\) \(\Rightarrow MD^2=MN\cdot MK\)

b) + Qua M kẻ EF // AB // CD

+ AD // CK

=> \(\dfrac{DM}{MK}=\dfrac{AM}{MC}\Rightarrow\dfrac{DM}{DM+MK}=\dfrac{AM}{AM+MC}\) (1)

\(\Rightarrow\dfrac{DM}{DK}=\dfrac{AM}{AC}=\dfrac{AE}{AD}\)

+ ME // AN

\(\Rightarrow\dfrac{DM}{DN}=\dfrac{DE}{DA}\)

=> \(\dfrac{DM}{DN}+\dfrac{DM}{DK}=\dfrac{DE}{DA}+\dfrac{AE}{AD}=1\)

\(\Rightarrow DM\left(\dfrac{1}{DN}+\dfrac{1}{DK}\right)=1\)

\(\Rightarrow\dfrac{1}{DN}+\dfrac{1}{DK}=\dfrac{1}{DM}\)

* Cm : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

+ \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\) ( theo tính chất dãy tỉ số bằng nhau )

\(\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\) ( để giải thích cho (1) )

Y
28 tháng 2 2019

2. A B C D O E F

+ AB // CD \(\Rightarrow\dfrac{AO}{CO}=\dfrac{BO}{DO}\)

\(\Rightarrow\dfrac{AO}{AO+CO}=\dfrac{BO}{BO+DO}\Rightarrow\dfrac{AO}{AC}=\dfrac{BO}{BD}\)

+ OE // CD => \(\dfrac{OE}{CD}=\dfrac{AO}{AC}\)

+ OF // CD => \(\dfrac{OF}{DC}=\dfrac{BO}{BD}\)

\(\Rightarrow\dfrac{OE}{CD}=\dfrac{OF}{DC}\Rightarrow OE=OF\)

Bài 1:

a: Xét hình thang ABCD có MN//AB//CD

nên AM/MD=BN/NC

b: AM/MD=BN/NC

=>MD/AM=NC/BN

=>\(\dfrac{MD+AM}{AM}=\dfrac{NC+BN}{BN}\)

=>AD/AM=BC/BN

=>AM/AD=BN/BC

c: AM/AD=BN/BC

=>1-AM/AD=1-BN/BC

=>DM/AD=CN/CB

a: Xét hình thang ABCD có MN//AB//CD

nên AM/MN=BN/NC

=>AM/AD=BN/BC(1)

Xét ΔADC có MO//DC

nên MO/DC=AM/AB(2)

Xét ΔBDC có ON//DC

nên ON/DC=BN/BC(3)

Từ (1), (2) và (3) suy ra MO=ON(đpcm)

b:

Để \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{MN}\) thì \(\dfrac{MN}{AB}+\dfrac{MN}{CD}=2\)

MN=2ON=2OM

\(\dfrac{2OM}{AB}+\dfrac{2ON}{CD}=2\left(\dfrac{OM}{AB}+\dfrac{ON}{CD}\right)\)

mà OM/AB=DO/DB

và ON/CD=BO/BD

nên \(VT=2\cdot\left(\dfrac{DO}{DB}+\dfrac{BO}{DB}\right)=2\left(đpcm\right)\)

17 tháng 1 2018

a) A B C D O M N

Áp dụng hệ quả Ta-let vào \(\Delta\)OAB và \(\Delta\)OCD(AB//CD)

=>\(\dfrac{AO}{OC}=\dfrac{BO}{DO}\)

=>\(\dfrac{AO}{OC+AO}=\dfrac{BO}{DO+BO}\)

=>\(\dfrac{AO}{AC}=\dfrac{BO}{BD}\)(1)

Áp dụng hệ quả Ta lét vào \(\Delta\)ADC và \(\Delta\)AMO(MN//CD)

=>\(\dfrac{MO}{DC}=\dfrac{AO}{AC}\)(2)

Áp dụng hệ quả Ta lét vào \(\Delta\)BCD và \(\Delta\)BNO(MN//CD)

=>\(\dfrac{NO}{DC}=\dfrac{BO}{BD}\)(3)

Từ (1), (2),(3):

=>\(\dfrac{MO}{DC}=\dfrac{NO}{DC}\)

=> MO=NO(dpcm)

CHÚC BẠN HỌC TỐT!

17 tháng 1 2018

mK GIẢI CÂU 1