Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)(ĐL tổng 3 góc 1 \(\Delta\))
\(\Rightarrow30^o+70^o+\widehat{C}=180^o\) (Vì \(\widehat{A}=30^o;\widehat{B}=70^o\) (gt))
\(\Rightarrow\widehat{C}=180^o-30^o-70^o=80^o\)
Bài 2:
Xét \(\Delta ABC\) (vuông tại A) có:
\(\widehat{B}+\widehat{C}=90^o\) (Tc \(\Delta\) vuông)
\(\Rightarrow\widehat{B}+40^o=90^o\) (Vì \(\widehat{C}=40^o\) (gt))
\(\Rightarrow\widehat{B}=90^o-40^o=50^o\)
Giải:
+) Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) ( 3 góc của tam giác )
\(\Rightarrow30^o+70^o+\widehat{C}=180^o\)
\(\Rightarrow\widehat{C}=80^o\)
Vậy...
+) Ta có: \(\widehat{B}+\widehat{C}=90^o\) ( do tam giác có \(\widehat{A}=90^o\) )
\(\Rightarrow40^o+\widehat{B}=90^o\)
\(\Rightarrow\widehat{B}=50^o\)
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
\(\widehat{A}\div\widehat{B}\div\widehat{C}=1\div2\div3=\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}\)
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (Tổng ba góc của một tam giác)
Áp dụng t/d dãy tỉ số bằng nhau, ta có: \(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{1+2+3}=\frac{180^0}{6}=30\)
\(\Rightarrow\widehat{A}=30.1=30^0\)
\(\widehat{B}=30.2=60^0\)
\(\widehat{C}=30.3=90^0\)
Vậy .....
Bài 2:
Gọi số đo các góc của tam giác ABC lần lượt là: a;b;c (\(a;b;c\inℕ^∗\) )
Ta có: \(a-b=18^0\Rightarrow a=18+b\)
\(b-c=18^0\Rightarrow c=b-18\)
Trong tam giác ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow a+b+c=180^0\)
\(\Leftrightarrow18+b+b+b-18=180^0\)
\(\Leftrightarrow3b=180^0\Rightarrow b=60\Rightarrow\widehat{B}=60^0\)
\(\Rightarrow\widehat{A}=18^0+\widehat{B}=18^0+60^0=78^0\)
\(\Rightarrow\widehat{C}=180^0-60^0-78^0=42^0\)
Vậy .....
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C x H I
Trên BC lấy điểm H sao cho ^BAH=600
Xét \(\Delta\)ABH: ^ABH=^BAH=600 => \(\Delta\)ABH là tam giác đều
=> AB=AH=BH (1)
Ta có: ^ABI=^ABC-^CBx=600-150=450.
Xét \(\Delta\)BAI: ^BI=900; ^ABI=450 => \(\Delta\)BAI vuông cân tại A => AB=AI (2)
Từ (1);(2) => AH=AI
Tính được ^BAC=1800-600-450=750 => ^HAC=750-^BAH=750-600=150 => ^HAC=150 (3)
Lại có: ^IAC=^BAH-^BAC=900-750=150 (4)
Từ (3) và (4) => ^HAC=^IAC
Xét \(\Delta\)AHC và \(\Delta\)AIC: AH=AI; ^HAC=^IAC; AC chung
=> \(\Delta\)AHC=\(\Delta\)AIC (c.g.c) => ^ACH=^ACI.
Vì ^ACH=450 => ^ACI=450 => ^ACH+^ACI=^ICH=900 hay ^ICB=900
Vậy ^ICB=900.
Chỗ ^IAC=^BAH-^BAC bạn sửa thành ^IAC=^BAI-^BAC nhé. Mình gõ nhầm đấy.