Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hai tam giác vuông AHD và CKD có:
AD = CB (gt)
= (so le trong)
Nên ∆AHD = ∆CKB (cạnh huyền, góc nhọn)
Suy ra AH = CK
Tứ giác AHCK có AH Vuông góc với DB và CK cũng vuông góc với DB. Nên AH // CK, Mà theo chứng mình trên AH = CK nên là hình bình hành,
b) Xét hình bình hành AHCK, trung điểm O của đường chéo của hình bình hành). Do đó ba điểm A, O, C thẳng hàng.
Tham khảo thôi!
a) Hai tam giác vuông AHD và CKD có:
AD = CB (gt)
\(\widehat{D_1}\) = \(\widehat{B_1}\) (so le trong)
Nên ∆AHD = ∆CKB (cạnh huyền, góc nhọn)
Suy ra AH = CK
Tứ giác AHCK có AH Vuông góc với DB và CK cũng vuông góc với DB. Nên AH // CK, Mà theo chứng mình trên AH = CK nên là hình bình hành,
b) Xét hình bình hành AHCK, trung điểm O của đường chéo của hình bình hành). Do đó ba điểm A, O, C thẳng hàng.
Lời giải:
a)
Theo bài ra ta có FC=BC2;EB=AB2FC=BC2;EB=AB2. Mà BC=ABBC=AB do ABCDABCD là hình vuông
⇒FC=EB⇒FC=EB
Xét tam giác vuông EBCEBC và FCDFCD có:
EB=FCEB=FC
BC=CDBC=CD (theo tính chất hình vuông)
⇒△EBC=△FCD⇒△EBC=△FCD (c.g.c)
⇒ECBˆ=FDCˆ⇒ECB^=FDC^ hay FCMˆ=MDCˆFCM^=MDC^
Do đó:
DMCˆ=1800−(MDCˆ+MCDˆ)=1800−(FCMˆ+MCDˆ)=1800−FCDˆ=1800−900=900DMC^=1800−(MDC^+MCD^)=1800−(FCM^+MCD^)=1800−FCD^=1800−900=900
⇒CE⊥DF⇒CE⊥DF
b) Gọi NN là trung điểm của DCDC. ANAN cắt DFDF tại KK
Ta thấy AE=AB2=AC2=NCAE=AB2=AC2=NC.
AB∥DCAB∥DC (tính chất hình vuông) nên AE∥NCAE∥NC
Tứ giác AECNAECN có 2 cạnh đối song song và bằng nhau nên AECNAECN là hình bình hành.
⇒AN∥EC⇒AN∥EC.
⇒KN∥MC⇒KN∥MC. Theo định lý Ta-let: DKKM=DNNC=1DKKM=DNNC=1
⇒DK=KM⇒DK=KM hay KK là trung điểm của DMDM
Mặt khác từ kết quả phần a ta cũng suy ra AK⊥DMAK⊥DM
Như vậy trong tam giác ADMADM thì AKAK vừa là đường trung tuyến vừa là đường cao nên ADMADM là tam giác cân tại AA, hay AD=AMAD=AM
Ta có đpcm.
\(\widehat{HAD}+\widehat{HDA}=\dfrac{1}{2}\left(\widehat{BAD}+\widehat{ADC}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
=>\(\widehat{AHD}=90^0\)
=>AG\(\perp\)DE
\(\widehat{GAB}+\widehat{GBA}=\dfrac{1}{2}\left(\widehat{BAD}+\widehat{ABC}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
=>\(\widehat{AGB}=90^0\)
\(\widehat{FBC}+\widehat{FCB}=\dfrac{1}{2}\left(\widehat{ABC}+\widehat{BCD}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
=>\(\widehat{BFC}=90^0\)
Xét tứ giác HEFG có \(\widehat{EHG}=\widehat{HGF}=\widehat{GFE}=90^0\)
nên HEFG là hình chữ nhật
Xét\(\Delta\)MBD và \(\Delta\)MNE có:
BM=MN
DM=ME
BMD=NME(2 góc đối đỉnh)
\(\Delta BMD=\Delta NME\) (c-g-c)
\(\Rightarrow\)MDB=MEN(2 góc tương ứng)
MÀ 2 GÓC NÀY Ở VỊ TRÍ SO LE TRONG\(\Rightarrow\)DB//NE
Mà DB\(\perp\)AB\(\Rightarrow\)NE\(\perp\)AB
chúc bạn làm tốt
gọi ý thôi nhé, còn trình bày thì bạn tự làm.
a) có AH vs KC vuông góc với DB nên AH//KC
tam giác DHA= tam giác BKC (ch-gn)
suy ra AH= KC
từ đó AHCK là hbh
b)
O là trung điểm HK
nối A,C
hbh AHCK có 2 đg chéo cắt nhau tại trung điểm
hay O là trung điểm của AC.
do đó A,O,C thẳng hàng