K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

Theo định lý Ta-lét:

Vì AK // EC nên A K E C = O K O E  và KB // ED nên B K E D = O K O E = O B O D  từ đó A K E C = K B D E và  A K E C = O B O D

Mà EC = ED => AK = KB

Nên (I), (II), (IV) đúng

Vì AB // DC => A O O C = A B D C  nên (III) sai

Đáp án: C

20 tháng 12 2018

vẽ hình giùm

lười

20 tháng 12 2018

A B C D E F K H

19 tháng 11 2018

sai đầu bài rồi bạn ơi

21 tháng 11 2018

đúng mà

8 tháng 8 2019

A B C D E F K

a) +)EK là đường trung bình nên EK = 1/2 . CD do đó EK < CD

+) EF và AB thì đang suy nghĩ

b) Ta có: \(EK=\frac{1}{2}CD=\frac{CD}{2}\)(t/c đường trung bình)

Tương tự, ta có \(KF=\frac{1}{2}AB\)

Cộng theo vế hai đẳng thức trên ta được:

\(\frac{AB+CD}{2}=EK+KF\ge EF\) ( theo quy tắc 3 điểm)

Đẳng thức xảy ra khi K thuộc EF, khi đó \(\hept{\begin{cases}EK\text{// }CD\\KF\text{//}AB\end{cases}}\) và K thuộc EF nên suy ra  \(\hept{\begin{cases}EF\text{//}CD\\EF\text{//}AB\end{cases}}\Leftrightarrow AB\text{//}CD\)

P/s: Chỗ "đẳng thức xảy ra..." mình không chắc.

10 tháng 4 2021

b) Ta có: \(\frac{AE}{FE}=\frac{DE}{BE}\)(theo cau a)).

\(\Rightarrow\frac{AE}{FE+AE}=\frac{DE}{BE+DE}\)(tính chất của tỉ lệ thức).

\(\Rightarrow\frac{AE}{AF}=\frac{DE}{BD}\)(4).

Lại có: \(\frac{KE}{AE}=\frac{DE}{BE}\)(theo câu a)).

\(\Rightarrow\frac{AE}{KE}=\frac{BE}{DE}\)(tính chất của tỉ lệ thức).

\(\Rightarrow\frac{AE}{KE+AE}=\frac{BE}{DE+BE}\)(tính chất của tỉ lệ thức).

\(\Rightarrow\frac{AE}{AK}=\frac{BE}{BD}\)(5).

Từ (4) và (5).

\(\Rightarrow\frac{AE}{AF}+\frac{AE}{AK}=\frac{DE}{BD}+\frac{BE}{BD}\).

\(\Rightarrow AE\left(\frac{1}{AF}+\frac{1}{AK}\right)=\frac{DE+BE}{BD}\).

\(\Rightarrow AE\left(\frac{1}{AF}+\frac{1}{AK}\right)=\frac{BD}{BD}\).

\(\Rightarrow AE\left(\frac{1}{AF}+\frac{1}{AK}\right)=1\).

\(\Rightarrow\frac{1}{AF}+\frac{1}{AK}=\frac{1}{AE}\)(điều phải chứng minh).

10 tháng 4 2021

A B C D E F K

23 tháng 5 2018

Hình bạn tự vẽ nhá !!

Xét \(\Delta BEC\) và \(\Delta CDB\) có :

\(\widehat{EBC}=\widehat{DCB}\left(gt\right)\)\(BC\)chung; \(\widehat{DBC}=\widehat{ECB}\left(=\frac{1}{2}\widehat{ABC}=\frac{1}{2}\widehat{ACB}\right)\)

\(\Rightarrow\Delta BEC=\Delta CDB\) \(\left(g-c-g\right)\)\(\Rightarrow BE=CD\)

Do đó \(\frac{BE}{AB}=\frac{CD}{AC}\) theo định lý Ta lét đảo \(\Rightarrow DE//BC\)

\(\Rightarrow\widehat{DBC}=\widehat{EDB}=\widehat{EBD}\) (SLT)

\(\Rightarrow\Delta BED\) cân tại \(E\) \(\Rightarrow DE=BE=c\) 

Do DE//BC ta có : \(\frac{DE}{BC}=\frac{AE}{AB}\) (ĐL Talét) (1)  Và \(\frac{DE}{AB}=\frac{BE}{AB}\) (2)

Cộng vế với vế của (1) và (2) ta được : \(\frac{DE}{BC}+\frac{DE}{AB}=\frac{AE}{AB}+\frac{BE}{AB}=\frac{AE+BE}{AB}=\frac{AB}{AB}=1\)

\(\Leftrightarrow DE\left(\frac{1}{AB}+\frac{1}{BC}\right)=1\Rightarrow\frac{1}{AB}+\frac{1}{BC}=\frac{1}{DE}\)

Hay \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\)  (ĐPCM)

22 tháng 5 2018

TRẢ LỜI HAY KHÔNG CŨNG KỆ THI XONG RÙI