Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quy đồng 3/4; 2/3; 5/7 rồi so sánh, số nào bé nhất thì đơn thức đó lớn nhất và ngược lại:
Hoặc là so sánh thẳng các số đó luôn
Câu 4:
a: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB=DC
b: ta có: ABDC là hình bình hành
nên AB//DC
c: Xét hình bình hành ABDC có AB=AC
nên ABDC là hình thoi
=>CB là tia phân giác của góc ACD
A B C H D GT ABC: A=90 AH BC BC BD KL a) AHB= DBH b) AB HD c) ACB=? ; AH=BD
a) Xét \(\Delta AHB\)và \(\Delta DBH\)có:
AH = BD(gt)
\(\widehat{AHB}=\widehat{DBH}=90^o\left(gt\right)\)
BH là cạnh chung
\(\Rightarrow\Delta AHB=\Delta DBH\left(c.g.c\right)\)
b) Ta có: \(\Delta AHB=\Delta DBH\)(theo a)
\(\Rightarrow\widehat{ABH}=\widehat{DHB}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AB // DH
c) \(\Delta AHB:\widehat{AHB}=90^o\)
\(\Rightarrow\widehat{BAH}+\widehat{ABH}=90^o\)(trong tam giác vuông, 2 góc nhọn phụ nhau)
\(\Rightarrow35^o+\widehat{ABH}=90^o\)
\(\Rightarrow\widehat{ABH}=55^o\)
\(\Delta ABC:\widehat{A}=90^o\)
\(\Rightarrow\widehat{ACB}+\widehat{ABC}=90^o\)(trong tam giác vuông, 2 góc nhọn phụ nhau)
\(\Rightarrow\widehat{ACB}+55^o=90^o\)
\(\Rightarrow\widehat{ACB}=35^o\)
2/ (Bạn tự vẽ hình giùm)
a/ Ta có DE // BC (gt)
=> \(\widehat{ADE}=\widehat{ABC}\)ở vị trí đồng vị
và \(\widehat{AED}=\widehat{ACB}\)ở vị trí đồng vị
Mà \(\widehat{ABC}=\widehat{ACB}\)(\(\Delta ABC\)cân tại A)
=> \(\widehat{ADE}=\widehat{AED}\)
=> \(\Delta ADE\)cân tại A
b/ Ta có \(\widehat{AED}=\widehat{CEG}\)(đối đỉnh)
và \(\widehat{ADE}=\widehat{BDF}\)(đối đỉnh)
và \(\widehat{ADE}=\widehat{AED}\)(cm câu a)
=> \(\widehat{CEG}=\widehat{BDF}\)(1)
Ta lại có \(\widehat{ECG}=90^o-\widehat{CEG}\)(\(\Delta CEG\)vuông tại G)
và \(\widehat{DBF}=90^o-\widehat{DFB}\)(\(\Delta BDF\)vuông tại F)
=> \(\widehat{ECG}=\widehat{DBF}\)(vì \(\widehat{CEG}=\widehat{BDF}\)) (2)
Ta tiếp tục có AB = AC (\(\Delta ABC\)cân tại A)
và AD = AE (\(\Delta ADE\)cân tại A)
=> AB - AD = AC - AE
=> DB = EC (3)
Từ (1), (2) và (3) => \(\Delta BFD=\Delta CGE\)(g. c. g) (đpcm)
c/ Ta có \(\widehat{ADE}=\widehat{AED}\)(cm câu a)
=> \(180^o-\widehat{ADE}=180^o-\widehat{AED}\)
=> \(\widehat{ADF}=\widehat{AEG}\)
và AD = AE (\(\Delta ADE\)cân tại A)
và DF = GE (\(\Delta BFD=\Delta CGE\))
=> \(\Delta ADF=\Delta AEG\)(c. g. c)
=> AF = AG (hai cạnh tương ứng) (đpcm)
d/ Ta có O là giao điểm của hai đường cao EI và DH của \(\Delta AGF\)
=> O là trực tâm của \(\Delta AGF\)
=> AO là đường cao thứ ba của \(\Delta AGF\)
=> AO \(\perp\)GF
Mà GF // BC
=> AO \(\perp\)BC
=> AO là đường cao của \(\Delta ABC\)
Mà \(\Delta ABC\)cân tại A
=> AO là đường phân giác của \(\Delta ABC\)
hay AO là tia phân giác của \(\widehat{BAC}\)(đpcm)
e/ Ta có DE \(\equiv\)BC
và AO \(\perp\)BC
=> AO \(\perp\)DE (đpcm)
phần \(AC\perp OG\)mình đang giải.
Ta có: (quan hệ giữa tính vuông góc với tính song song)
Chọn đáp án D.
60