A B C D E

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2021

 

Giải thích các bước giải:

Kẻ Cz // AB

⇒ˆABC+ˆBCz=180°⇒ABC^+BCz^=180°(2 góc  trrong cùng phía bù nhau)

Ta có: ˆABC+ˆBCD+ˆCDE=360°ABC^+BCD^+CDE^=360°

=ˆABC+ˆBCz+ˆzCD+ˆCDE=360°=ABC^+BCz^+zCD^+CDE^=360°

⇒180°+ˆzCD+ˆCDE=360°⇒180°+zCD^+CDE^=360°

⇒ˆzCD+ˆCDE=360°−180°=180°⇒zCD^+CDE^=360°-180°=180° mà 2 góc này nằm ở vị trí trong cùng phía

=> DE // Cz mà Cz // AB

=> AB // DE (đpcm)

19 tháng 9 2018

Hình nào?

không có hình thì làm làm sao được?

Bạn vẽ hình đi :)

a) Có : \(AB^2+AC^2=3^2+4^2=25\) ; \(BC^2=5^2=25\)

Ta thấy \(AB^2+AC^2=BC^2\Rightarrow\Delta ABC\) vuông tại A

b) Xét \(\Delta ABD\)\(\Delta EBD\) có:

\(\widehat{BAD}=\widehat{BED}=90^o;BD:chung;\widehat{ABD}=\widehat{EBD}\)

\(\Rightarrow\) \(\Delta ABD\) = \(\Delta EBD\)

\(\Rightarrow\) AD = ED

c) Xét \(\Delta ADF\)\(\Delta EDC\) có:

\(\widehat{FDA}=\widehat{CDE};AD=ED;\widehat{FAD}=\widehat{CED}=90^o\)

\(\Rightarrow\) \(\Delta ADF\) = \(\Delta EDC\)

\(\Rightarrow\) DF = DC

Xét \(\Delta DEC\) vuông tại E

=> DE < DC mà DC = DF => DE < DF

25 tháng 5 2019

a) Ta có: AB2 + AC2 = 32 + 42 = 9 + 16=25

BC2 = 52 = 25

=> AB2 + AC2 = BC2 (=25)

Áp dụng định lí Py - ta - go đảo

=> ΔABC vuông tại A.

b) Xét 2 Δ vuông ABD và EBD có:

+) ∠BAD = ∠BED = 90 độ

+) Cạnh BD chung

+) ∠B1 = ∠B2 (vì BD là tia phân giác của ∠B)

=> △ABD = ΔEBD (ch - góc nhọn)

=> AD = ED (2 cạnh tương ứng)

c) Xét 2 Δ vuông AFD và ECD có:

+) ∠FAD = ∠CED = 90 độ

+) AD = ED (cmt)

+) ∠FDA = ∠CDE (vì 2 góc đối đỉnh)

=> ΔAFD = ΔECD

=> DF = DC (2 cạnh tương ứng)

Xét △ CED vuông tại E có:

∠CED = 90 độ là góc lớn nhất

=> CD là cạnh lớn nhất

=> CD > ED

mà CD = FD (cmt)

=> FD > ED.

Chúc bạn học tốt!

29 tháng 4 2019

Hình tự vẽ nha 

a ) Vì AB = 3 ( gt ) => AB2 = 9

          AC = 4 ( gt ) => AC2 = 16

          BC = 5 ( gt ) => BC2 = 25

MÀ 25 = 9 + 16

DO đó BC2 = AB2 + AC2

=> \(\Delta\)ABC vuông tại A ( định lí đảo định lí py ta go )

Vậy  \(\Delta\)ABC vuông tại A

29 tháng 4 2019

b ) Vì  \(\Delta\)ABC vuông tại A ( CM a ) => BAC = 90o hay BAD = 90o

Vì DE \(\perp\)BC ( gt ) => BED = DEC = 90o ( định nghĩa 2 đường thẳng vuông góc )

Vì BD là tia phân giác  của góc B ( gt ) => ABD = EBD 

Xét  \(\Delta\)ABD và \(\Delta\)EBD có :

ABD = EBD ( cmt )

BD chung

BAD = BED ( = 90o )

DO đó \(\Delta\)ABD = \(\Delta\)EBD ( cạnh huyền - góc nhọn )

=> DA = DE ( 2 cạnh tương ứng )

Vậy ..

A B C D E F

Bài làm

Xét tam giác AED và tam giác CEF

Ta có: AE = EC ( E là trung điểm của AC )

    \(\widehat{AED}=\widehat{FEC}\)( hai góc đối đỉnh )

            ED = EF ( giả thiết )

=> Tam giác AED = tam giác CEF ( c.g.c )

b) Vì tam giác AED = tam giác CEF ( theo câu a )

=> FC = AD ( hai cạnh tương ứng )

Mà AD = BD ( giả thiết )

=> FC = BD 

13 tháng 5 2018

Hình bn tự vẽ nhé!!!!!

a. Ta có :

52 = 25

32 + 42 = 25

=> 52 = 32 + 42 hay BC2 = AB2 + AC2

=> ΔABCΔABC vuông tại A

b.Xét ΔABDΔABD và ΔEBDΔEBD ,có :

BD : cạnh chung

ABDˆ=EBDˆABD^=EBD^ ( BD là tia phân giác của góc B )

BADˆ=BEDˆ=900BAD^=BED^=900

=> ΔABD=ΔEBDΔABD=ΔEBD ( cạnh huyền - góc nhọn )

=> DA = DE

c.Xét ΔADFΔADF và ΔEDCΔEDC ,có :

DA = DE ( c/m b )

FADˆ=DECˆ=900FAD^=DEC^=900

ADFˆ=EDCˆADF^=EDC^ ( 2 góc đối đỉnh )

=> ΔADF=ΔEDCΔADF=ΔEDC ( g.c.g hoặc cạnh góc vuông - góc nhọn kề )

=> DF = DC (1)

mà DC > DE (2) ( trong tam giác vuông cạnh huyền lớn hơn cạnh góc vuông )

Từ (1) và (2) => DF > DE (đpcm )

13 tháng 5 2018

â) Trong tam gi\(BC^2\)

cho hình vẽ nào cơ

bạn phải đăng lên chứ

19 tháng 8 2017

cậu tự vễ hộ tớ đi tớ biết làm đây mới hỏi các cậu chứ

4 tháng 5 2016

a)

\(AB^2+AC^2=3^2+4^2=9+16=25\left(cm\right)\)

\(BC^2=5^2=25\left(cm\right)\)

=> tam giác ABC vuông tại A

b)

xét 2 tam giác vuôgn ABD và EBD có:

BD(chung)

ABD=EBD(gt)

=> tam giác ABD=EBD(CH-GN)

=> DA=DE

c)

xét tam giác ADF và tam giác EDC có:

AD=DE(theo câu a)

FAD=DEC=90

ADF=EDC(2 góc đối đỉnh)

=> tam giác ADF=EDC(g.c.g)

=> DC=FF

ta có tam giác ADF có A=90=> FD là cạnh lớn nhất trong tam giác ADF

=> FD>AD mà AD=DE( theo câu b)=> DF>DE