loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2017

Sao bh lại làm đề ôn thi vào 10

20 tháng 9 2017

;v Đề tuyển sinh là theo mỗi tỉnh ;v searrch gg tỉnh nào mà chẳng có =))

AH
Akai Haruma
Giáo viên
11 tháng 7 2017

Lời giải:

Ta có \(P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+\frac{1}{4ab}+4ab\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\geq \frac{4}{a^2+b^2+2ab}=\frac{4}{(a+b)^2}\geq 4\)

Áp dụng BĐT AM-GM: \(\frac{1}{4ab}+4ab\geq 2\).

\(1\geq a+b\geq 2\sqrt{ab}\rightarrow ab\leq \frac{1}{4}\)

Do đó \(P\geq 4+1+2=7\) hay \(P_{\min}=7\)

Dấu bằng xảy ra khi \(a=b=\frac{1}{2}\)

11 tháng 7 2017

hahacảm ơn bn nhiều lắm

3 tháng 2 2017

Gọi giao điểm của OM với đường tròn (O;R) là I

\(\Delta\)AMO vuông tại A có AI là đường trung tuyến ứng với cạnh huyền OM nên AI=\(\frac{1}{2}\)OM mà OM=2R nên AI=R.

\(\Delta\)OAI có OA=OI=AI(=R) nên \(\Delta\)OAI đều nên góc AOM=60 độ

Vì tiếp tuyến tại A và B của (O;R) cắt nhau tại M nên áp dụng tính chất 2 đường tiếp tuyến cắt nhau thì OM là tia phân giác của góc OAB hay góc AOM bằng một nửa góc AOB hay góc AOB bằng 2.60=120 độ

26 tháng 3 2017

Dùng BĐT Bunhiacopski:

Ta có: \(ac+bd\le\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\)

\(\left(a+c\right)^2+\left(b+d\right)^2\)

\(=a^2+b^2+2\left(ac+bd\right)+c^2+d^2\)

\(\le\left(a^2+b^2\right)+2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}+c^2+d^2\)

\(\Rightarrow\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\) (Đpcm)

26 tháng 3 2017

Câu hỏi của Hoàng Khánh Linh - Toán lớp 8 - Học toán với OnlineMath copy nhớ ghi nguồn