K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2018

Ai làm hộ mình với

12 tháng 6 2018

Bạn tự vẽ hình nhá.

Vì E là trung điểm MN => OE vuông góc MN => góc OEA =90độ

Xét tứ giác: AEOC có góc AEO + góc ACO=180độ => AEOC nội tiếp => A, E, O, C cùng thuộc 1 đường tròn

Xét tứ giác: ABEO có góc ABO + góc AEO=90độ => ABEO nội tiếp => A, E, O, B cùng thuộc 1 đường tròn

=> A, B, C, O, E cùng thuộc 1 đường tròn.

b, Ta có: góc BNC= 1/2 góc BOC (góc nội tiếp bằng 1/2 góc ở tâm) => 2.góc BNC= góc BOC

MÀ góc ABOC nội tiếp (do góc ABO+ góc ACO = 180độ) => gó BAC + góc BOC=180độ

=> 2.góc BNC+ góc BAC= 180độ

c, ta có: AMN là cát tuyến, AB là tiếp tuyến  của (O) => AB2=AM.AN

Lại có tg AHB đồng dạng tg ABO (g-g) => \(\frac{AH}{AB}=\frac{AB}{AO}\)=> AB2=AH.AO

=> AH.AO= AM.AN => \(\frac{AM}{AH}=\frac{AO}{AN}\)

Và góc MAH=góc OAN => tg MAH đồng dạng tg OAN (c-g-c) => góc AMH = góc AON

Mà góc AMH + góc HMN =180độ

=> góc AON + góc HMN =180độ

=> tứ giác MNOH nội tiếp

Bài 1: Cho nửa đường tròn (O) đường kính AB. Lấy điểm C trên đoạn AO, C khác A và O. Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn (O) tại D. M là điểm bất kì trên cung BD ( M khác B và D). Tiếp tuyến tại M của (O) cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.a/ CM bốn điểm B,C,F,M cùng nằm trên một đường tròn.b/ CM: EM = EFc/ Gọi I là tâm đường tròn ngoại tiếp...
Đọc tiếp

Bài 1: Cho nửa đường tròn (O) đường kính AB. Lấy điểm C trên đoạn AO, C khác A và O. Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn (O) tại D. M là điểm bất kì trên cung BD ( M khác B và D). Tiếp tuyến tại M của (O) cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.

a/ CM bốn điểm B,C,F,M cùng nằm trên một đường tròn.

b/ CM: EM = EF

c/ Gọi I là tâm đường tròn ngoại tiếp tam giác DMF. CM góc ABI có số đo không đổi khi M di động trên cung \(\widebat{BD}\)

Bài 2: Cho tam giác đều ABC nội tiếp trong đường tròn (O). Một đường thẳng d thay đổi đi qua A, cắt (O) tại điểm thứ hai là E, cắt hai tiêp tuyến kẻ từ B và C của đường tròn (O) lần lượt tại M và N sao cho A,M,N nằm ở cùng nửa mặt phẳng bờ BC. Gọi giao điểm của hai đường thẳng MC và BN tại F. CMR:

a/ Hai tam giác MBA và CAN dồng dạng và tích MB.CN không đổi.

b/ Tứ giác BMEF nội tiếp trong một đường tròn.

c/ Đường thẳng EF luôn đi qua một điểm cố định khi (d) thay đổi.

0
26 tháng 3 2019

a) OBNC có NCO=OBN=90 nên OBNC là tứ giác nội tiếp

b) Xét tam giác ADC  có AB,DC là các đường cao 

mà AB cắt DC tại O 

suy ra O là trực tâm của tam giác ADC

nên NO vuông góc với AD 

c)

CONB là tứ giác nôi tiếp nên COA=CNB

Xét tam giác ACO và tam giác DCN 

COA=CNB(cmt)

ACO=NCD=90

nên tam giác ACO đồng dạng với tam giác DNC 

nên CA.CN=CO.CD

Còn câu d mk chịu

12 tháng 7 2020

Cho em hỏi chị ở dưới câu a sao NCO bằng 90° vậy ạ

17 tháng 8 2017

a )AM và AN đều là tiếp tuyến của (O) 
còn ABC là cát tuyến 
=> AM^2 = AN^2 = AB.AC 
b) 
Dễ thấy OA vuông góc với MN tại trung điểm MN 
=> OA vuông góc với MN tại F 
Ta có OMA = ONA = OEA = 90 
=> M,N,E đều thuộc đường tròn đường kính OA 
=> EMAB nội tiếp 
=> góc EMN = góc EAN (1) 
Gọi Nt là tia đối của tia AN 
Ta có góc INt = 1/2 số đo IN = góc EMN (vì Nt là tiếp tuyến) (2) 
Từ (1) và (2) 
=> góc EAN = góc INt 
=> IN//AE hay IN//AB 
c) 
đường tròn ngoại tiếp tam giác OEF đi qua điểm E là điểm cố định vì E là trung điểm BC 
( câu này hơi ngộ )

Bài này cô giáo mình đã chữa ~^^ tối mát