![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cộng vế với vế của ba đẳng thức ta đc :
\(x+y+z=2\left(ax+by+cz\right)\Rightarrow ax+by+cz=\frac{x+y+z}{2}\) (*)
Lấy (*) - (1) ta có : \(ax+by+cz-\left(by+cz\right)=\frac{x+y+z}{2}-x\)
<=> \(ax=\frac{y+z-x}{2}\Leftrightarrow a=\frac{y+z-x}{2x}\Rightarrow a+1=\frac{y+z-x}{2x}+1=\frac{x+y+z}{2x}\)
=> \(\frac{1}{a+1}=\frac{2x}{x+y+z}\)
CMTT với 1/b+1 và 1/c+1
=> ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
theo đề ra ta có :
\(\frac{A}{a}=\frac{B}{b}=\frac{C}{c}=k\) => A =ka ; B=kb ; C=kc
vậy Q = \(\frac{kax+kby+kc}{ax+by+c}=\frac{k\left(ax+by+c\right)}{ax+by+c}=k\)
vậy giá trị của biểu thức quy không phụ thuộc vào giá trị của x và y
![](https://rs.olm.vn/images/avt/0.png?1311)
Ban gi oi,cho minh hoi mau cua phan so ma de bai da cho co viet hoa (co giong)voi tu ko ban
bạn Luong Ngoc Quynh Nhu ơi , bạn hỏi câu thật là ngớ ngẩn . Viết hoa thì người ta viết hoa còn không viết hoa thì người ta không viết hoa. Lần sau , suy nghĩ trước khi hỏi nha
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có :
\(\frac{k}{x}=\frac{a}{c}=ax=kc\) ; \(\frac{k}{y}=\frac{b}{d}=>kd=by\) (1)
c + d = k (2)
từ 1 và 2 , ta có
ax+ by = kc+ kd = k(c+d) = kk= \(k^2\)
vậy ax+by = \(k^2\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) Đồ thị của hàm số y = \(\dfrac{2}{3}\)x là đường thẳng OA với A(3 ; 2)
b) \(2x+\dfrac{3}{4}=\dfrac{-1}{2}\)
\(2x=\dfrac{-1}{2}-\dfrac{3}{4}\)
\(2x=-\dfrac{5}{4}\)
\(x=-\dfrac{5}{4} :2\)
\(x=-\dfrac{5}{8}\)
c) Ta có: x.2 = y.4 \(\Rightarrow\dfrac{x}{4}=\dfrac{y}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{x-y}{4-2}=\dfrac{12}{2}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.4=24\\y=6.2=12\end{matrix}\right.\)
Vậy x = 24; y = 12.
Bài 2:
A P x y Q B M
a) NB?
Vì M là trung điểm của AB
nên MA = MB = \(\dfrac{AB}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Ta có: \(\left\{{}\begin{matrix}Ax\perp AB\\By\perp AB\end{matrix}\right.\)
\(\Rightarrow Ax//By\)
b) Xét hai tam giác vuông AMP và BMQ có:
MA = MB (gt)
\(\widehat{AMP}=\widehat{BMQ}\) (đối đỉnh)
\(\Rightarrow\Delta AMP=\Delta BMQ\left(cgv-gn\right)\)
\(\Rightarrow\) MP = MQ
Xét hai tam giác AMQ và BMP có:
MA = MB (gt)
\(\widehat{AMQ}=\widehat{BMP}\) (đối đỉnh)
MQ = MP (cmt)
\(\Rightarrow\Delta AMQ=\Delta BMP\left(c-g-c\right)\)
\(\Rightarrow\widehat{AQM}=\widehat{BPM}\)
Mà hai góc này ở vị trí so le trong
\(\Rightarrow\) AQ // BP (đpcm).