A a 120 ' c B C b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 7 2021

Lời giải:

Ta thấy:

$\widehat{aAb}=120^0=\widehat{cBA}$. Mà hai góc này ở vị trí so le trong nên $Aa\parallel Cb$ (đpcm)

Kẻ tia $Bc'$ là tia đối của tia $Bc$

Khi đó:

$\widehat{cBA}+\widehat{ABc'}=180^0$

$120^0+\widehat{ABc'}=180^0$

$\widehat{ABc'}=60^0$

$\widehat{c'Bc}=\widehat{ABC}-\widehat{ABc'}=80^0-60^0=20^0$

$\widehat{c'Bc}+\widehat{BCb}=20^0+160^0=180^0$ mà 2 góc này ở vị trí trong cùng phía nên $Bc'\parallel Cb$

Mà $Bc', Bc$ là 2 tia đối nên $Cb\parallel cB$ (đpcm)

 

 

17 tháng 8 2020

a) Ta có: OA ⊥ OM (GT)

\(\Rightarrow\widehat{AOM}=90^0\)

Ta có: OB ⊥ ON (GT)

\(\Rightarrow\widehat{BON}=90^0\)

b)

Ta có: \(\left\{{}\begin{matrix}\widehat{AON}+\widehat{NOM}=90^0\left(=\widehat{AOM}\right)\\\widehat{BOM}+\widehat{NOM}=90^0\left(=\widehat{BON}\right)\end{matrix}\right.\)

=> Góc AON = Góc BOM

17 tháng 8 2020

THANKhihi

14 tháng 12 2019

Hình bạn tự vẽ nha!

a) Vì \(Oz\) là tia phân giác của \(\widehat{xOy}\left(gt\right)\)

\(A\in Oz\left(gt\right)\)

=> \(OA\) là tia phân giác của \(\widehat{xOy}.\)

Hay \(OA\) là tia phân giác của \(\widehat{BOC}.\)

Xét 2 \(\Delta\) vuông \(ABO\)\(ACO\) có:

\(\widehat{ABO}=\widehat{ACO}=90^0\left(gt\right)\)

Cạnh AO chung

\(\widehat{BOA}=\widehat{COA}\) (vì \(OA\) là tia phân giác của \(\widehat{BOC}\))

=> \(\Delta ABO=\Delta ACO\) (cạnh huyền - góc nhọn).

b) Theo câu a) ta có \(\Delta ABO=\Delta ACO.\)

=> \(BO=CO\) (2 cạnh tương ứng).

Xét 2 \(\Delta\) vuông \(BOI\)\(COI\) có:

\(\widehat{OBI}=\widehat{OCI}=90^0\)

\(BO=CO\left(cmt\right)\)

Cạnh OI chung

=> \(\Delta BOI=\Delta COI\) (cạnh huyền - cạnh góc vuông).

=> \(IB=IC\) (2 cạnh tương ứng).

Chúc bạn học tốt!

14 tháng 11 2019

Bạn tham khảo tại đây nhé: Câu hỏi của Nguyễn Hoàng Ngọc Hân.

Chúc bạn học tốt!

15 tháng 10 2015

Đề không được rõ lắm. Vẽ hình thế này vẫn không sai nek:

C a A B D

11 tháng 2 2020

1) Ta có : Đặt M = 3x + 1 + 3x + 2 + ... + 3x + 100

= 3x(3 + 32 + ... + 3100

= 3x[(3 + 32 + 33 + 34) + (35 + 36 + 3+ 38) + ... + (397 398 + 399 + 3100)]

= 3x[(3 + 32 + 33 + 34) + 34.(3 + 32 + 33 + 34) + ... + 396.(3 + 32 + 33 + 34)]

= 3x(120 + 34.120 + .... + 396.120)

= 3x.120.(1 + 34 + .... + 396)

=> \(M⋮120\)(ĐPCM)

2) Ta có \(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}\)

\(\Rightarrow\frac{3a+b+c}{a}-2=\frac{a+3b+c}{b}-2=\frac{a+b+3c}{c}-2\)

\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)

Nếu a + b + c = 0

=> a + b = - c

b + c = -a

c + a = -b

Khi đó P = \(\frac{-c}{c}+\frac{-a}{a}+\frac{-b}{b}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)

Nếu a + b + c \(\ne\)0

=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

Khi đó P = \(\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}=2+2+2=6\)

Vậy nếu a + b + c = 0 thì P = -3

nếu a + b + c  \(\ne\)0 thì P = 6

11 tháng 2 2020

Ta có : 

\(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\)

\(=\left(3^{x+1}+3^{x+2}+3^{x+3}+3^{x+4}\right)+...\)\(+\left(3^{x+97}+3^{x+98}+3^{x+99}+3^{x+100}\right)\)

\(=3^x\left(3+3^2+3^3+3^4\right)+...+3^{x+96}\left(3+3^2+3^3+3^4\right)\)

\(=3^x.120+3^{x+4}.120+...+3^{x+96}.120\)

\(=120.\left(3^x+3^{x+4}+...+3^{x+96}\right)\)

Vì \(120⋮120\)

\(\Rightarrow120.\left(3^x+3^{x+4}+...+3^{x+96}\right)⋮120\)

\(\Rightarrow3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}⋮120\left(\forall x\inℕ\right)\left(đpcm\right)\)

2 tháng 9 2017

O N a b M y x

a, Vì \(Oa\perp OM\)

\(\Leftrightarrow aOM=90^0\)

\(MOa+aON=MON\)

\(\Leftrightarrow aON=MON-MOa=120^0-90^0=30^0\)

\(Ob\perp ON\)

\(\Leftrightarrow bOn=90^0\)

\(bOM+bON=MON\)

\(\Leftrightarrow bOM=MON-bOn=120^0-90^0=30^0\)

Vậy \(aON=bOM\)

b, Ta có :

\(aOx=xON=\dfrac{aON}{2}=\dfrac{30^0}{2}=15^0\) (do Ox là tia phân giác của aON)

\(MOy=yOb=\dfrac{mOb}{2}=\dfrac{30^0}{2}=15^0\) (do Oy là tia phân giác của MOy)

Ta có :

\(MON-MOy-xON=yOx\)

\(\Leftrightarrow yOx=120^0-15^0-15^0=90^0\)

Vậy \(Ox\perp Oy\)