Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)
Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:
\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)
\(\dfrac{9y^2}{25}-y^2=-4\)
\(-\dfrac{16}{25}y^2=-4\)
\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)
\(y^2=\dfrac{25}{4}\)
\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)
*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)
*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)
Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:
\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)
Lời giải:
Áp dụng tính chất tổng 3 góc trong một tam giác bằng $180^0$
a.
$x=180^0-80^0-45^0=55^0$
b.
$y=180^0-30^0-90^0=60^0$
c.
$z=180^0-30^0-25^0=125^0$
Ta có
\(\widehat{C1}+\widehat{C2}=180^0\) ( kề bù ) (1)
\(\widehat{C1}-\widehat{C2}=40^0\) (giả thiết ) (2)
Cộng (1) và (2)
\(\Rightarrow\left(\widehat{C1}+\widehat{C2}\right)+\left(\widehat{C1}-\widehat{C2}\right)=180^0+40^0\)
\(\Rightarrow2.\widehat{C1}=220^0\)
\(\Rightarrow\widehat{C1}=110^0\)
\(\Rightarrow\widehat{C2}=70^0\)
Mặt khác
\(\begin{cases}\widehat{C1}=\widehat{D2}\\\widehat{C1}=\widehat{D1}\end{cases}\) (a//b)
\(\Rightarrow\begin{cases}\widehat{D1}=70^0\\\widehat{D2}=110^0\end{cases}\)
Có: \(\widehat{C_1}+\widehat{C_2}=180\) (cạp góc kề bù)
=> \(\begin{cases}\widehat{C_1}+\widehat{C_2}=180\\\widehat{C_1}-\widehat{C_2}=40\end{cases}\) \(\Leftrightarrow\begin{cases}40+\widehat{C_2}+\widehat{C_2}=180\\\widehat{C_1}=40+\widehat{C_2}\end{cases}\)
\(\Leftrightarrow\begin{cases}2\widehat{C_2}=140\\\widehat{C_1}=40+\widehat{C_2}\end{cases}\)\(\Leftrightarrow\begin{cases}\widehat{C_2}=70\\\widehat{C_1}=110\end{cases}\)
=> \(\widehat{C_1}=\widehat{D_2}=110\) (cặp góc soletrong do a//b)
\(\widehat{C_2}=\widehat{D_1}=70\) (cặp góc soletrong do a//b)
Đổi 30 phút = 0,5 giờ
Quãng sông từ A đến B dài là:
\(x\) \(\times\) 0,5 + y \(\times\) 1 = 0,5\(x\) + y (km)
Kết luận Quãng đường từ A đên B dài: 0,5\(x\) + y (km)
a.
Ta có: \(\widehat{BDE}+\widehat{EDF}+\widehat{D_1}=180^0\)
\(\Rightarrow\widehat{BDE}+90^0+\widehat{D_1}=180^0\)
\(\Rightarrow\widehat{BDE}+\widehat{D_1}=90^0\)
Mà \(\widehat{D_1}=\widehat{D_2}\Rightarrow\widehat{BDE}+\widehat{D_2}=90^0\)
Lại có \(\widehat{HDE}+\widehat{D_2}=\widehat{EDF}=90^0\)
\(\Rightarrow\widehat{BDE}=\widehat{HDE}\)
\(\Rightarrow DE\) là phân giác của \(\widehat{BDH}\)
b.
Xét hai tam giác vuông BDE và HDE có:
\(\left\{{}\begin{matrix}DE-chung\\\widehat{BDE}=\widehat{HDE}\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta_{\perp}BDE=\Delta_{\perp}HDE\left(ch-gn\right)\)
\(\Rightarrow BE=HE\)
Tương tự, xét 2 tam giác vuông HDF và ADF có:
\(\left\{{}\begin{matrix}DF-chung\\\widehat{D_2}=\widehat{D_1}\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\Delta_{\perp}HDF=\Delta_{\perp}ADF\left(ch-gn\right)\)
\(\Rightarrow AF=HF\)
\(\Rightarrow HE+HF=BE+AF\)
\(\Rightarrow EF=BE+AF\)