K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{CFE}=60^0\\\widehat{AEB}=\widehat{CEF}=60^0\end{matrix}\right.\)

=>ΔCFE đều

b: Xét tứ giác ABCD có 

\(\widehat{BAC}=\widehat{BDC}=90^0\)

Do đó: ABCD là tứ giác nội tiếp

25 tháng 8 2019

         A B C D O

Xét tam giác ABC và BAD có :

AB : chung 

\(\widehat{BAD}=\widehat{ABC}\)

AD = BC    

( ABCD là hình thang cân ) 

\(\Rightarrow\Delta ABC=\Delta BAD\)

\(\Rightarrow\widehat{BAC}=\widehat{ABD}\)

\(\Delta AOB\)CÓ : \(\widehat{OAB}=\widehat{OBA}\Rightarrow\Delta AOB\)cân tại O nên OA = OB

25 tháng 7 2018

Em tham khảo tại link dưới đây nhé:

Câu hỏi của Hoàng Tử Bóng Đêm Kiyoshi - Toán lớp 8 - Học toán với OnlineMath

31 tháng 8 2017
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1) b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c) =(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc) c)Đặt x-y=a;y-z=b;z-x=c a+b+c=x-y-z+z-x=o đưa về như bài b d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y) =x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
23 tháng 7 2020

a) xét tam giác MBC có \(\widehat{MBC}=\widehat{MCB}\)=> tam giác MBC cân tại M, HE _|_BC

=> E là trung điểm của BC

tam giác EMC có EO là phân giác \(\widehat{MEC}\)

=> \(\frac{MD}{CD}=\frac{ME}{EC}=\frac{3}{4}\)

\(ME=\frac{3}{4}CE\)

\(ME^2+CE^2=MC^2\Rightarrow\frac{9}{16}CE^2+CE^2=15^2\)

\(\Rightarrow\frac{25}{16}CE^2=15^2\Rightarrow CE=12\Rightarrow HE=9\)

b) tam giác ABM và tam giác ACB có 

\(\widehat{BAC}=90^o\)là góc chung

\(\widehat{ABM}=\widehat{ACB}\left(gt\right)\)

=> tam giác ABM ~ tam giác ACB (g.g)

=> \(\frac{AB}{AC}=\frac{AM}{AB}\Rightarrow AB^2=AC\cdot AM\)