Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{CFE}=60^0\\\widehat{AEB}=\widehat{CEF}=60^0\end{matrix}\right.\)
=>ΔCFE đều
b: Xét tứ giác ABCD có
\(\widehat{BAC}=\widehat{BDC}=90^0\)
Do đó: ABCD là tứ giác nội tiếp
A B C D O
Xét tam giác ABC và BAD có :
AB : chung
\(\widehat{BAD}=\widehat{ABC}\)
AD = BC
( ABCD là hình thang cân )
\(\Rightarrow\Delta ABC=\Delta BAD\)
\(\Rightarrow\widehat{BAC}=\widehat{ABD}\)
\(\Delta AOB\)CÓ : \(\widehat{OAB}=\widehat{OBA}\Rightarrow\Delta AOB\)cân tại O nên OA = OB
Em tham khảo tại link dưới đây nhé:
Câu hỏi của Hoàng Tử Bóng Đêm Kiyoshi - Toán lớp 8 - Học toán với OnlineMath
a) xét tam giác MBC có \(\widehat{MBC}=\widehat{MCB}\)=> tam giác MBC cân tại M, HE _|_BC
=> E là trung điểm của BC
tam giác EMC có EO là phân giác \(\widehat{MEC}\)
=> \(\frac{MD}{CD}=\frac{ME}{EC}=\frac{3}{4}\)
\(ME=\frac{3}{4}CE\)
\(ME^2+CE^2=MC^2\Rightarrow\frac{9}{16}CE^2+CE^2=15^2\)
\(\Rightarrow\frac{25}{16}CE^2=15^2\Rightarrow CE=12\Rightarrow HE=9\)
b) tam giác ABM và tam giác ACB có
\(\widehat{BAC}=90^o\)là góc chung
\(\widehat{ABM}=\widehat{ACB}\left(gt\right)\)
=> tam giác ABM ~ tam giác ACB (g.g)
=> \(\frac{AB}{AC}=\frac{AM}{AB}\Rightarrow AB^2=AC\cdot AM\)
tớ ko biết