Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa câu b: Từ M kẻ ME
Bg
a/ Xét hai tam giác AMB và AMC có:
AB = AC (gt)
BM = MC (vì M là trung điểm của BC)
AM là cạnh chung
Nên \(\Delta AMB=\Delta AMC\)(c.c.c)
Vậy \(\Delta AMB=\Delta AMC\)
b/ Xét hai tam giác vuông AME và AMF có:
\(\widehat{EAM}=\widehat{FAM}\)(vì \(\Delta AMB=\Delta AMC\))
AM là cạnh chung
Nên \(\Delta AME=\Delta AMF\)(g.c.g)
Do đó AE = AF (hai cạnh tương ứng)
Vậy AE = AF
c và d hơi dài. Đợi một thời gian :((
a, C/m ∆ AMK = ∆ AMH
Xét∆ AMK và ∆ AMH có:
Góc AMK = góc AMH = 90°
AM chung
Góc MAK = góc MAH (gt)
➡️∆ AMK = ∆ AMH (ch-gn)
b, ✳️ C/m AM vuông góc với QCX
Gọi giao điểm của AM và QC là P.
Xét ∆AQC có: CH vuông góc với AQ
QK vuông góc với AC
mà M là giao điểm của CH và QK
➡️M là trực tâm của ∆ AQC
➡️AP vuông góc với QC (đpcm)
✳️ C/m HK // QC
Xét ∆ AMK = ∆ AMH (cmt)
➡️AK = AH (2 cạnh t/ư)
Nối H với K, gọi giao điểm của AM và HK là D.
Xét ∆ AHK cân tại A (AK = AH)
➡️AD là phân giác đồng thời là đg cao
➡️AD vuông góc với HK
Ta có: AP vuông góc với HK (cmt)
AP vuông góc với QC (cmt)
➡️HK // QC (quan hệ từ vuông góc đến song song)
c, So sánh MC và QC
Xét ∆ MKC có góc K = 90°
➡️Góc KMC là góc nhọn
mà góc QMC là góc kề bù với góc KMC
➡️Góc QMC tù
Xét ∆ QMC có góc QMC tù
➡️QC là cạnh lớn nhất
➡️QC > MC ( quan hệ giữa góc và cạnh đối diện)
còn câu d để mk nghĩ chút đã
Mình gợi ý nhé
a) Hai tam giác vuông này có hai góc QHC và BHP bằng nhau (đối đỉnh); hai góc HQC và HPB bằng nhau (90o) nên suy ra hai góc QCH và HBP cũng bằng nhau.
Từ đây chứng minh được \(\Delta QHC=\Delta PHB\left(g.c.g\right)\)
b) \(\widehat{DAM}=90^\circ-\widehat{ADM}=\widehat{QDC}=90^\circ-\widehat{QCD}=\widehat{QCH}\)
c) Từ câu b) suy ra \(\Delta DAM=\Delta CDQ\) (g.c.g) nên DM = CQ.