K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

Ta có : \(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)

 \(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{c+d+a}+1=\frac{c}{d+a+b}+1=\frac{d}{a+b+c}+1\)

 \(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{c+d+a}=\frac{a+b+c+d}{d+a+b}=\frac{a+b+c+d}{a+b+c}\)

Nếu a + b + c + d = 0

=> a + b = - c - d

 b + c = - a - d

 c + d = - b - a

 d + a = - b - c

Khi đó \(P=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{d+a}+\frac{-\left(b+a\right)}{b+a}=\frac{-\left(b+c\right)}{b+c}\)

                \(=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Nếu a + b + c + d \(\ne\)0

\(\Rightarrow\frac{1}{c+d}=\frac{1}{d+a}=\frac{1}{b+a}=\frac{1}{b+c}\)

\(\Rightarrow c+d=d+a=b+a=b+c\)

\(\Rightarrow a=b=c=d\)

Khi đó \(P=1+1+1+1=4\)

Vậy nếu a + b + c + d = 0 thì P = - 4

       nếu a + b + c + d \(\ne\)0 thì P = 4

a b d c

ta có ab // cd , ad // bc

và a vuông góc => a = 90 

vì ab // cd => a + d = 180 ( TCP ) => 90 + d = 180 => d = 90

vì ad // bc => d + c = 180 ( TCP ) => 90 + c = 180 => c = 90 

vì ab // cd => c + b = 180 ( TCP ) => 90 + b = 180 => c = 90

5 tháng 10 2018

nếu A thẳng hàng với C thì ko đc nên C phải chéo với A

=>các góc kia =90 độ

21 tháng 10 2016

Phải sửa đề thành\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)

Ta có :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\Rightarrow a=b=c=d\)

\(\Rightarrow P=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}=\frac{a}{2a}.4=2\)

21 tháng 10 2016

mình nói hướng làm cho bạn thôi nhé

nếu bạn đặt \(\frac{a}{b}\)\(\frac{b}{c}\)=\(\frac{c}{d}\)=\(\frac{d}{a}\)=k vào thay vào rùi sẽ ra

4 tháng 11 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

=> a = b = c = d

=> \(D=\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}\)

D = 1 + 1 + 1 + 1 = 4

3 tháng 12 2016

Câu 1:

Giải:

Ta có: \(15x=\left(-10\right)y=6z\Rightarrow\frac{15x}{30}=\frac{\left(-10\right)y}{30}=\frac{6z}{30}\Rightarrow\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}\)

Đặt \(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k,y=-3k,z=5k\)

\(xyz=-30000\)

\(\Rightarrow2k\left(-3\right)k5k=-30000\)

\(\Rightarrow\left(-30\right).k^3=-30000\)

\(\Rightarrow k^3=1000\)

\(\Rightarrow k=10\)

\(\Rightarrow x=20;y=-30;z=50\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(20;-30;50\right)\)

Câu 3:

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3b+3c+3d+3a}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)

\(\frac{a}{3b}=\frac{1}{3}\Rightarrow3a=3b\Rightarrow a=b\)

Tương tự ta có b = c, c = d, d = a

\(\Rightarrow a=b=c=d\)

\(\Rightarrowđpcm\)

3 tháng 12 2016

3, áp dụng tính chất dãy tỉ số bằng nhau:

=>\(\frac{a}{3.b}\)=\(\frac{b}{3.c}\)=\(\frac{c}{3.d}\) =\(\frac{d}{3.a}\) =\(\frac{a+b+c+d}{3\left(b+c+a+d\right)}\) =\(\frac{1}{3}\)

\(\Rightarrow\)\(\frac{a}{3b}\)=\(\frac{1}{3}\) =>\(\frac{1.b}{3.b}\) =\(\frac{b}{3.b}\) =>\(\frac{a}{3b}\) =\(\frac{b}{3b}\) =>...a=b (1)

\(\frac{c}{3d}\)=\(\frac{1}{3}\) =>\(\frac{1.d}{3.d}\) =\(\frac{d}{3d}\) =>\(\frac{c}{3d}\) =\(\frac{d}{3d}\) =>...c=d (2)

\(\frac{b}{3c}\) =\(\frac{1}{3}\) =>\(\frac{1.c}{3.c}\) =\(\frac{c}{3c}\)=>\(\frac{b}{3c}\) =\(\frac{c}{3c}\)=>..b=c (3)

\(\frac{d}{3a}\)=\(\frac{1}{3}\) =>\(\frac{1.a}{3.a}\) =\(\frac{a}{3a}\)=>\(\frac{d}{3a}\) =\(\frac{a}{3a}\)...=>d=a (4)

từ (1).(2).(3)(4)=>a=b=c=d(dpcm)

 
16 tháng 12 2023

Tổng bốn góc của một tứ giác luôn bằng 3600

Vậy \(\widehat{ABC}\) = 3600 - (900 x 2 + 500

       \(\widehat{ABC}\) = 1300

27 tháng 10 2017

bạn ko cho hình thì trl sao đc

9 tháng 9 2021

:))