Cho hình vẽ bên. Chứng minh:

a)   By...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2018

a) Ta có x'At ^ + tAx ^ = 180 ∘  (hai góc kề bù)

mà  x'At ^ = 70 ∘

⇒ xAt ^ = 180 ∘ − 70 ∘ = 110 ∘

Mặt khác  ABy ^ = 110 ∘

⇒ xAt ^ = ABy ^  mà hai góc này ở vị trí đồng vị

⇒ By // xx'

b)

Kẻ tia By' là tia đối của tia By

Vì By // xx'  nên  By' // xx'

⇒ x'At ^ = ABy' ^ = 70 ∘  (hai góc đồng vị)

Mặt khác  ABC ^ = ABy' ^ + y'BC ^

Mà ABC ^ = 110 ∘  và  ABy' ^ = 70 ∘

⇒ y'BC ^ = 110 ∘ − 70 ∘ = 40 ∘

Ta lại có  BCz ^ = 40 ∘

⇒ y'BC ^ = BCz ^  mà hai góc này ở vị trí so le trong

⇒ By // Cz

6 tháng 8 2024

ko bit cạch trl

29 tháng 11 2023

sssssss

29 tháng 11 2023

a/

\(Ax\perp m\left(gt\right);By\perp m\left(gt\right)\) => Ax//By (cùng vuông góc với m)

Mà Cz//Ax (gt)

=> Cz//By (cùng // với Ax)

b/

\(\widehat{BCz}=\widehat{ACB}-\widehat{C}=110^o-30^o=80^o\)

Ta có

Cz//By (cmt) \(\Rightarrow\widehat{BCz}=\widehat{CBy}=80^o\) (góc so le trong)

c/

\(CD\perp Ax\left(gt\right)\Rightarrow\widehat{ADC}=90^o\)

Cz//Ax (gt) \(\Rightarrow\widehat{A}=\widehat{C}=30^o\) (Góc so le trong)

Xét tg vuông ACD có

\(\widehat{ACD}=\widehat{ADC}-\widehat{A}=90^o-30^o=60^o\)

a) Có : AB=AC(tg ABC cân tại A)

BD=CE(gt)

=> AB+BD=AC+CE

=> AD=AE

=> Tg ADE cân tại A

\(\Rightarrow\widehat{D}=\widehat{E}=\frac{180^o-\widehat{A}}{2}\)

Lại có : \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{A}}{2}\)(tg ABC cân tại A)

\(\Rightarrow\widehat{D}=\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\)

Mà chúng là 2 góc đồng vị

=> BC//DE

b) Có : \(\widehat{CBD}=180^o-\widehat{ABC}\)

\(\widehat{BCE}=180^o-\widehat{ACB}\)

Mà : \(\widehat{ABC}=\widehat{ACB}\)(tg ABC cân tại A)

\(\Rightarrow\widehat{CBD}=\widehat{BCE}\)

- Xét tg BCD và CBE có :

BD=CE(gt)

BC-cạnh chung

\(\widehat{CBD}=\widehat{BCE}\left(cmt\right)\)

=> Tg BCD=CBE(c.g.c)

=> BE=CD(đccm)

c) Có : \(\widehat{KBC}=\widehat{KCB}\)(tg BCD=CBE)

=> Tg KBC cân tại K

- Có : \(\widehat{KDE}=\widehat{ADE}-\widehat{ADC}\)

\(\widehat{KED}=\widehat{AED}-\widehat{AEB}\)

Mà : \(\widehat{AED}=\widehat{ADE}\)(tg ADE cân tại A)

\(\widehat{ADC}=\widehat{AEB}\)(tg BCD=CBE)

\(\Rightarrow\widehat{KED}=\widehat{KDE}\)

=> Tg KDE cân tại K

d) Xét tam giác ABK và ACK có :

AB=AC(tg ABC cân tại A)

AK-cạnh chung

KB=KC(tg KBC cân tại K)

=> Tg ABK=ACK(c.c.c)

=> \(\widehat{BAK}=\widehat{CAK}\)

=> AK là tia pg góc BAC

e) Không thấy rõ đề : DM và EN như thế nào so với BC?

10 tháng 2 2021

Câu e là

Từ D, E kẻ DM, EN vuông góc BC. CM: DM = EN

16 tháng 8 2017

Gọi By' là tia đối của tia By.
Gọi I là giao điểm của AC và yy'
By//Ax (gt) nên By'//Ax
Do By'//Ax nên xAC=AIy' ( so le trong)
Ta lại có: AIy=BIC ( đối đỉnh)
Do yBC là góc ngoài tại đỉnh B của tam giác BCI nên:
yBC=BIC+ACB
Mà xAC=AIy'
BIC=AIy'
=> xAC=BIC
Do đó yBC=xAC+ACB (đpcm)

27 tháng 7 2017

pn ơi hình như đề sai a+5/a-5 va b+6/b-6

27 tháng 7 2017

ta có : a+5/a-5=b+6/b-6
=> a+5/b+6=a-5/b-6
áp dụng dãy tỉ số bằng nhau ta được:
a+5/b+6=a-5/b-6 =(a+5+a-5)/(b+6+b-6)=(a+5-a+5)/(b+6-b+6)
=> 2a/2b = 10/12
=> a/b = 5/6

25 tháng 12 2021

a/ Xét \(\Delta ABD\) và \(\Delta KBD\)

AB=BK (gt); BD chung

\(\widehat{ABD}=\widehat{KBD}\) (gt)

\(\Rightarrow\Delta ABD=\Delta KBD\left(c.g.c\right)\Rightarrow AD=DK\)

b/

\(\Delta ABD=\Delta KBD\Rightarrow\widehat{BAC}=\widehat{BKD}=90^o\Rightarrow DK\perp BC\)

\(AH\perp BC\left(gt\right)\)

=> AH//DK (cùng vuông góc với BC)

c/

Gọi M' là giao của BD với CE. Xét \(\Delta BCE\) có

\(EK\perp BC,CA\perp BE\)=> D là trực tâm của \(\Delta BCE\Rightarrow BM\perp CE\)  (trong tam giác 3 đường cao đồng quy tại 1 điểm gọi là trực tâm của tam giác)

Mà BM là phân giác của \(\widehat{ABC}\Rightarrow\Delta BCE\) cân tại B (trong tam giác đường cao đồng thời là đường phân giác thì tg đó là tg cân)

=> BM' là đường trung tuyến (trong tg cân đường cao xp từ đỉnh đồng thời là đường trung tuyến của tam giác)

=> M' là trung điểm của CE, mà M cũng là trung điểm của CE => M trùng M' => B, D, M thẳng hàng

ĐỀ 3:Bài 1: Tính: a) ;......................................................................................... ......................................................................................... ......................................................................................... ......................................................................................... ............................................................................................
Đọc tiếp

ĐỀ 3:

Bài 1: Tính:

a) ;

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

b) ;

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

c) ;

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

d) ;

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

Bài 2:  Tìm x:

a) ;

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

b) ;

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

c) ;

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

d) ;                  

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

Bài 3: Tìm x, y biết:  ;

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

Bài 4: Tìm 3 số x, y, z sao cho

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

.........................................................................................

 

0
18 tháng 10 2016

trc hết D1= 70O

a) D1 = D3= 70 (đối đỉnh)

C2 + D3 = 110+70 = 180 ( 2 góc này ở

vị trí trong cùng phía) nên a//b

b) theo a) có a//b

mà c vuông góc với a => c vuong goc voi b

4 tháng 6 2020

a) △ABC có : Hai đường cao BE và AD mà 2 đường này cùng cắt nhau tại điểm I ⇒ I là trực tâm

⇒ CI là đường cao còn lại ⇒ CI ⊥ AB

b) Xét △BEC có : góc EBC + gócBEC + góc BCE = \(180^0\)( định lí tổng ba góc )

⇒ góc EBC = \(180^0\) - góc BEC - góc BCE = \(180^0\)- \(90^0\)-\(40^0\)= \(50^0\)

Lại xét △BID có : góc BID + góc IBD + góc BDI = \(180^0\)

⇒ góc BID = \(180^0\) - \(90^0\) - \(50^0\) = \(40^0\)

Có góc BID + góc DIE = \(180^0\)( 2 góc kề bù )

⇒ góc DIE = \(180^0\) - góc BID = \(180^0-40^0\)= \(140^0\)