Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do a//b \(\Rightarrow\widehat{DAB}+\widehat{B_1}=180^o\)(2 góc tcp)
\(\Rightarrow90^o+\widehat{B_1}=180^o\)
\(\Rightarrow\widehat{B_1}=180^o-90^o=90^o\)
Do a// b \(\Rightarrow\widehat{BCD}+\widehat{D_1}=180^o\)
\(\Rightarrow130^o+\widehat{D_1}=180^o\)
\(\Rightarrow\widehat{D_1}=180^o-130^o=50^o\)
Giải:
a) Ta có: AB // CD, CD _|_ a
\(\Rightarrow\) AB _|_ a
\(\Rightarrow\widehat{A}=90^o\)
b) Vì AB // CD nên:
\(\widehat{C_1}=\widehat{B_4}=61^o\) ( đồng vị )
\(\Rightarrow\widehat{B_4}=\widehat{B_2}=61^o\) ( đối đỉnh )
\(\Rightarrow\widehat{B_1}+\widehat{B_2}=180^o\) ( kề bù )
Mà \(\widehat{B_2}=61^o\Rightarrow\widehat{B_1}=119^o\)
\(\Rightarrow\widehat{B_1}=\widehat{C_2}=161^o\) ( đồng vị )
Vậy a) \(\widehat{A}=90^o\)
b) \(\widehat{B_2}=61^o,\widehat{B_1}=119^o,\widehat{C_2}=119^o\)
Hình vẽ có rồi nha!!!!!!
a) Vì AB // CD (gt)
\(\Rightarrow\)\(\widehat{D} = \widehat{A}\) (so le trong)
mà \(\widehat{D} = 90^0\) (gt)
\(\Rightarrow\)\(\widehat{A} = 90^0\)
b) Ta có:
\(\widehat{C1} + \widehat{C2} = 180^0\) (kề bù)
\(61^0+ \widehat{C2} = 180^0 (\widehat{C1} = 61^0(gt))\)
\(\widehat{C2} = 119^0\)
Vì AB // CD (gt)
\(\Rightarrow\) \(\widehat{C2} = \widehat{B1} = 119^0\) (đồng vị)
\(\widehat{B2} = \widehat{C1} = 61^0\) (so le ngoài)
A D B C 80độ
Hình 2
1 2 4 3 A 3 4 2 1 B a b
Hình 3
1 2 3 4 87 độ
1. Vì đường thẳng A \(\perp\) với đường thẳng B
\(\Rightarrow\widehat{ABC}=90^o\)
Vì \(\widehat{C}\) và \(\widehat{D}\)là hai góc so le trong
\(\Rightarrow\widehat{C}=\widehat{D}=80^o\)
Vì \(\widehat{C}\)và \(\widehat{BCD}\)kề bù
\(\Rightarrow\widehat{C}+\widehat{BCD}=180^o\)
Mà \(\widehat{C}=80^o\)
\(\Rightarrow80^o+\widehat{BCD}=180^o\)
\(\Rightarrow\widehat{BCD}=180^o-80^o=100^o\)
Vì a // b nên ta có:
a) ^B1 = ^A4 = 37° (2 góc so le trong)
Vậy ^B1 = 37°.
b) ^A1 = ^B4 (2 góc đồng vị).
c) ^B2 + ^A4 = 180° (2 góc trong cùng phía)
hay ^B2 + 37° =180°.
=> ^B2 = 180° - 37° = 143°.
Vậy ^B2 = 143°.
a) Xét tam giác ABC có :\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)=180\(^0\)( tổng 3 góc trong tam giác)
80\(^0\)+50\(^0\)+\(\widehat{C}\)=180\(^0\)
\(\widehat{C}\)=180\(^0\)-(80\(^0\)+50\(^0\))
\(\widehat{C}\)=50\(^0\)
\(\Rightarrow\)tam giác ABC cân tại A
b) Ta có DE//BC
\(\Rightarrow\)\(\widehat{D}\)=\(\widehat{B}\)
\(\Rightarrow\)\(\widehat{E}\)=\(\widehat{C}\)
Mà \(\widehat{B}\)=\(\widehat{C}\)
\(\Rightarrow\)\(\widehat{D}\)=\(\widehat{E}\)
Vậy: tam giác ADE cân tại A
Ta có tam giác ABC : gA + gB + gC =180 độ (vì kề bù)
Nên gC =180 - gB -gC =180-50-80=50 độ
Vì gC=gB mà chúng ở góc đáy
Vậy tam giác abc là tam giác cân
b, Vì BC//DE
Nên gD=gB =50 độ vì đồng vị ;gC=gE=50độ vì đồng vị (1)
Từ 1 ta thấy gD =gE
Mà chúng ở góc đáy
Vậy tam giác ADE là tam giác cân
chú ý g là góc
a) Ta có: \(\widehat{EDC}=\widehat{BCD}\left(gt\right)\)
Mà \(\widehat{BCD}=50^0\left(gt\right)\)
=> \(\widehat{EDC}=50^0.\)
Lại có: \(\widehat{DAB}\) là góc ngoài tại đỉnh A của \(\Delta ABC.\)
=> \(\widehat{DAB}=180^0-\widehat{A}=180^0-80^0\)
=> \(\widehat{DAB}=100^0.\)
Vì \(Am\) là tia phân giác của \(\widehat{DAB}\left(gt\right)\)
=> \(\widehat{DAm}=\widehat{mAB}=\frac{\widehat{DAB}}{2}=\frac{100^0}{2}=50^0.\)
Mà \(\widehat{EDC}=50^0\left(cmt\right)\)
=> \(\widehat{EDC}=\widehat{DAm}\)
Mà 2 góc này nằm ở vị trí so le trong.
=> \(DE\) // \(Am.\)
b) Ta có:
\(\left\{{}\begin{matrix}\widehat{DAm}=50^0\left(cmt\right)\\\widehat{DCB}=50^0\left(gt\right)\end{matrix}\right.\)
=> \(\widehat{DAm}=\widehat{DCB}\)
Mà 2 góc này nằm ở vị trí đồng vị.
=> \(Am\) // \(BC\left(đpcm\right).\)
Chúc bạn học tốt!
ai giúp mik vs ạ