Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
A' B' C' A B C H H'
Xét tam giác ABC và tam giác A'B'C' đều ta có:
\(\widehat{ABC}=\widehat{A'B'C'}=60^o\)(theo tính chất của tam giác đều)
\(\Rightarrow\widehat{HAB}=\widehat{H'A'B'}\)
Xét tam giác \(ABH\) và tam giác \(A'B'H'\) ta có:
\(\widehat{AHB}=\widehat{A'H'B'}\left(=90^o\right);AH=A'H'\left(gt\right);\widehat{HAB}=\widehat{H'A'B'}\left(cmt\right)\)
Do đó tam giác ABH= tam giác A'B'H'(g.c.g)
=> AB=A'B'=> AB=AC=CB=A'B'=A'C'=B'C'(theo tính chất của tam giác đều)
Xét tam giác ABC và tam giác A'B'C' ta có:
\(AB=A'B'\left(cmt\right);\widehat{ABC}=\widehat{A'B'C'}\left(=60^o\right);BC=B'C'\left(cmt\right)\)
Do đó tam giác ABC= tam giác A'B'C'(c.g.c)(đpcm)
Xong =))
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc HBE
Do đo: ΔABE=ΔHBE
b: Ta có:BA=BH
EA=EH
Do đó:BE là đường trung trực của AH
c: Ta có: EA=EH
mà EH<EC
nên EA<EC
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(\)\(\widehat{A}+\widehat{B}+\widehat{C}=180^{\circ}\) (Tổng ba góc trong tam giác)
<=> \(\left.\begin{matrix} \widehat{B}+\widehat{C}=180-\widehat{A}=180^{\circ}-100^{\circ}=80^{\circ} & & \\ \widehat{B}-\widehat{C}=30^{\circ} & & \end{matrix}\right\}\)
=> \(2\widehat{B}=110^{\circ}\)
=> \(\widehat{B}=55^{\circ}\)
=> \(\widehat{C}=25^{\circ}\)
P/s: câu b tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
B C A I M
a) Xét \(\Delta AIB\)và \(\Delta MIC\)có:
\(BI=CI\)(I là trung điểm của BC)
\(\widehat{AIB}=\widehat{MIC}\)(2 góc đối đỉnh)
\(AI=MI\left(gt\right)\)
Do đó: \(\Delta AIB=\Delta MIC\left(c.g.c\right)\)
b) Xét \(\Delta AIC\)và \(\Delta MIB\)có:
\(BI=CI\)(I là trung điểm của BC)
\(\widehat{AIC}=\widehat{MIB}\)(2 góc đối đỉnh)
\(AI=MI\left(gt\right)\)
Do đó: \(\Delta AIC=\Delta MIB\left(c.g.c\right)\)
\(\Rightarrow\widehat{IAC}=\widehat{IMB}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong nên AC // BM (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1
a.
Xét \(\Delta ABC\) có :
\(\widehat{ABC}+\widehat{BAC}+\widehat{BCA}=180^o\) ( định lý tổng 3 góc của 1 \(\Delta\) )
\(\Rightarrow\widehat{BCA}=40^o\) (1)
Ta có Ax là tia đối của AB
suy ra \(\widehat{BAC}+\widehat{CAx}=180^o\)
\(\widehat{CAx}=80^o\)
lại có Ay là tia phân giác \(\widehat{CAx}\)
\(\Rightarrow\widehat{xAy}=\widehat{yAc}=\dfrac{\widehat{CAx}}{2}=\dfrac{80^o}{2}=40^o\) (2)
Từ (1)(2) suy ra \(\widehat{yAc}=\widehat{ACB}=40^o\)
mà chúng ở vị trí so le trong
\(\Rightarrow\) Ay//BC
Bài 2
Rảnh làm sau , đến giờ học rồi .
Vì tam giác ABC = tam giác A'B'C' => góc B = góc B ( 2 góc tương ứng )
xét tam giác ABC và tam giác A'B'C'
góc A= góc A' =900
BC=B'C' (gt)
góc C =góc C' ( GT)
=> Tam giác A BC= tam giác A'B'C' ( Cạnh huyền -góc nhọn )