Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D 4 9 E I
a, Xét tam giác ABD và tam giác BDC ta có :
^BAD = ^CBD ( gt )
^ABD = ^BDC ( so le trong )
Vậy tam giác ABD ~ tam giác BDC ( g.g )
\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\)( tỉ số đồng dạng ) \(\Rightarrow BD^2=AB.DC=4.9=36\)
\(\Rightarrow BD=\sqrt{36}=6\)cm
b, Gọi giao điểm AC và BD là I
Xét tam giác BIE và tam giác AID có : BE // AD
Theo hệ quả Ta lét ta có : \(\frac{BI}{ID}=\frac{IE}{IA}=\frac{BE}{AD}\)
Xét tam giác AIB và tam giác DIC có AB // CD ( ABCD là hình thang )
\(\frac{AI}{IC}=\frac{IB}{ID}=\frac{AB}{DC}\)
mà \(\frac{BE}{AC}=\frac{AB}{DC}=\frac{IB}{ID}\Rightarrow BE.DC=AB.AC\)
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
góc C chung
=>ΔBDC đồng dạng vói ΔHBC
b: \(BD=\sqrt{25^2-15^2}=20\left(cm\right)\)
HC=15^2/25=9cm
HD=25-9=16cm
a: Xét tứ giác ABFD có
AB//FD
BF//AD
=>ABFD là hình bình hành
=>AB=DF
Xét tứ giác ABCK có
AB//CK
AK//BC
=>ABCK là hình bình hành
=>AB=CK=DF
c: Xet ΔMAB và ΔMKD có
góc MAB=góc MKD
góc AMB=góc KMD
=>ΔMAB đồng dạng với ΔMKD
=>MB/MD=AB/KD
BP/PC=DF/FC
mà KD=FC
và AB=DF
nên MB/MD=BP/PC
=>MP//DC
A B C D H K
a) Xét tam giác BDC và HBC có:
góc DCB chung; góc BHC = DBC (= 90o)
=> tam giác BDC đồng dạng HBC (g - g)
b) => \(\frac{BC}{HC}=\frac{DC}{BC}\Rightarrow HC.DC=BC^2\Rightarrow HC=\frac{BC^2}{DC}=\frac{15^2}{25}=\frac{225}{25}=9\)cm
HD = CD - HC = 25 - 9 = 16 cm
c) Áp dụng ĐL Pi ta go trong tam giác vuông BHC có: BH2 = BC2 - CH2 = 225 - 81 = 144 => BH = 12 cm
Kẻ AK vuông góc với CD tại K
Tam giác ADK = BCH (do cạnh huyền AD = BC; góc ADK = BCH)
=> DK = CH = 9 cm
Dễ có: tứ giác ABHK là hình bình hành => AB = HK = CD - CH - DK = 25 - 9 - 9 = 7 cm
S ABCD = (AB + CD) . BH : 2 = (7 + 25) . 12 : 2 = 192 cm vuông
A B C D H 15 25
a, Xét tam giác BDC và tam giác HBC ta có
^DBC = ^BHC = 900
^C _ chung
Vậy tam giác BDC ~ tam giác HBC ( g.g )
b, Vì tam giác BDC ~ tam giác HBC nên
\(\frac{BC}{HC}=\frac{DC}{BC}\)( tỉ số đồng dạng )
\(\Rightarrow BC^2=HC.DC\)
c, Ta có : \(BC^2=HC.DC\)( cm b )
\(\Rightarrow HC=\frac{BC^2}{DC}=\frac{225}{25}=9\)cm
\(\Rightarrow HD=DC-HC=25-9=16\)cm
a: Xét hình thang ABCD có
M là trung điểm của AB
N là trung điểm của CD
Do đó: MN là đường trung bình của hình thang ABCD
Suy ra: \(MN=\dfrac{AD+BC}{2}=14\left(cm\right)\)
a) xét hình thang ABCD có:
M là trung điểm của AB
N là trung điểm của DC
\(\Rightarrow\) MN là đường trung bình của hình thang ABCD
\(\Rightarrow MN=\dfrac{AD+BC}{2}=\dfrac{16+12}{2}=\dfrac{28}{2}=14cm\)
Hình vẽ?