K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2019

CD ⊥ (ABC) vì CD ⊥ AB và CD ⊥ BC

AB ⊥ (BCD) vì AB ⊥ BC và AB ⊥ CD

Phương án A sai vì tam giác ABC không vuông góc tại C nên trung điểm của AB không cách đều ba điểm A, B, C

Phương án B sai vì tam giác ABC không vuông góc tại A nên trung điểm của BC không cách đều ba điểm A, B, C

Phương án C đúng vì tam giác ACD vuông góc tại C nên trung điểm K của AD cách đều ba điểm A, C, D; tam giác ABD vuông góc tại B nên trung điểm K của AD cách đều ba điểm A, B và D

Phương án D sai vì tam giác CBD không vuông góc tại B nên trung điểm của CD không cách đều ba điểm B, C, D.

Đáp án C

NV
15 tháng 4 2020

Gọi H là hình chiếu vuông góc của A lên (BCD)

\(AB=AC=AD\Rightarrow HA=HB=HC\Rightarrow H\) là tâm đáy

\(\Rightarrow DH\perp BC\)

\(AH\perp\left(BCD\right)\Rightarrow AH\perp BC\)

\(\Rightarrow BC\perp\left(ADH\right)\Rightarrow BC\perp AD\)

b/ Chắc bạn nhầm đề?

Hoàn toàn tương tự câu a, ta chứng minh được \(CD\perp\left(ABH\right)\Rightarrow CD\perp AB\Rightarrow\left(AB;CD\right)=90^0\)

Điểm I để làm gì nhỉ? :<

16 tháng 4 2020

đề cho như thế bạn ạ :<< mình cũng không biếtgianroi

a: Xét ΔAMB có ME là đường phân giác

nên AE/EB=AM/MB=AM/MC(4)

XétΔAMC có MD là đường phân giác

nên AD/DC=AM/MC(5)

Từ (4) và (5) suy ra AE/EB=AD/DC

b: Xét ΔABC có 

AE/EB=AD/DC

nên ED//BC

Xét ΔABM có EI//BM

nên EI/BM=AE/AB(1)

Xét ΔACM có ID//MC

nên ID/MC=AD/AC(2)

Xét ΔABC có 

ED//BC

nên AE/AB=AD/AC(3)

Từ (1), (2) và (3) suy ra EI/BM=DI/MC

mà BM=CM

nên EI=DI

hay I là trung điểm của ED

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

NV
14 tháng 4 2020

Đặt \(AB=AC=AD=x\)

Do \(\widehat{BAC}=60^0\Rightarrow\Delta ABC\) đều \(\Rightarrow BC=x\)

Tương tự tam giác ABD đều \(\Rightarrow BD=x\)

\(\Rightarrow\Delta BCD\) cân tại B

Gọi H là hình chiếu vuông góc của A lên (BCD)

Do \(AB=AC=AD\Rightarrow HA=HB=HC\)

\(\Rightarrow H\) là tâm đường tròn ngoại tiếp tam giác

Mà BCD cân tại B \(\Rightarrow BH\perp CD\Rightarrow CD\perp\left(AHB\right)\Rightarrow CD\perp AB\)

b/Từ câu a, do N là trung điểm CD nên N là giao điểm của BH và CD

\(\Rightarrow MN\in\left(ABH\right)\Rightarrow CD\perp MN\)

Lại có: \(\Delta DBC=\Delta DAC\) (c.c.c)

\(\Rightarrow BN=AN\)

\(\Rightarrow\Delta ABN\) cân tại N \(\Rightarrow MN\perp AB\) (trong tam giác cân trung tuyến là đường cao)

NV
14 tháng 4 2020

Vậy thì áp dụng định lý hàm cos:

\(cos\widehat{MIN}=\frac{IM^2+IN^2-MN^2}{2IM.IN}=\frac{a^2+2a^2-5a^2}{2.a.a\sqrt{2}}=-\frac{\sqrt{2}}{2}\)

\(\Rightarrow\widehat{MIN}=135^0\Rightarrow\) góc giữa AB và CD là \(180^0-135^0=45^0\)

Trùm Trường

NV
14 tháng 4 2020

IM là đường trung bình tam giác ABC \(\Rightarrow\left\{{}\begin{matrix}IM=\frac{AB}{2}=a\\IM//AB\end{matrix}\right.\)

IN là đường trung bình tam giác ACD \(\Rightarrow\left\{{}\begin{matrix}IN=\frac{CD}{2}=a\sqrt{2}\\IN//CD\end{matrix}\right.\)

\(\Rightarrow\) Góc giữa AB và CD bằng góc nhọn giữa IN và IM

Đến đây thì nhận ra là đề thiếu dữ kiện để tính, chỉ có chừng này dữ kiện ko thể tính được góc giữa 2 đường thẳng AB và CD. Chắc bạn ghi thiếu đề

31 tháng 3 2017

Hướng dẫn.

(h.3.21)

a)

=> AB ⊥ CD.
b)

Suy ra

Ta có => AB ⊥ MN.

Chứng minh tương tự được CD ⊥ MN.