Cho hình tròn tâm O có bán kính 5cm . Vẽ dây BC=8cm , vẽ OH vuông góc BC tia HO cắt (O)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔOBC cân tại O có OH là đường cao

nên H là trung điểm của BC

=>HB=HC=8/2=4cm

ΔOHB vuông tại H nên OB^2=OH^2+HB^2

=>OH^2=5^2-4^2=9

=>OH=3cm

Xét ΔOHB vuông tại H có sin BOH=BH/BO=4/5

nên \(\widehat{BOH}\simeq53^0\)

b: Xét ΔABC có

AH vừa là đường cao, vừa là đường trung tuyến

=>ΔABC cân tại A

=>AB=AC

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái

Giải giúp mình các bài này với ạ!1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = ACa. CM : Tam giác OAB = tam giác OACb. CM : AC là tiếp tuyến của đường tròn tâm Oc. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không...
Đọc tiếp

Giải giúp mình các bài này với ạ!

1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm

2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O

3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.

0

 

a: Xét (O) có

ΔABC nội tiếp

AB là đường kính

=>ΔABC vuông tại C

=>CA^2+CB^2=AB^2

=>CB^2=10^2-6^2=64

=>CB=8cm

ΔOBC cân tại O 

mà OI là đường cao

nên I là trung điểm của BC

=>IB=IC=BC/2=4cm

OI=căn OB^2-BI^2=căn 5^2-4^2=3(cm)

ΔCAB vuông tại C có CH là đường cao

nên AH*AB=AC^2

=>AH*10=6^2=36

=>AH=3,6cm

b: Xét ΔBIO vuông tại I và ΔBHC vuông tại H có

góc HBC chung

=>ΔBIO đồng dạng với ΔBHC

=>BI/BH=BO/BC

=>BI*BC=BH*BO

AH
Akai Haruma
Giáo viên
30 tháng 9 2021

Lời giải:

a.

$OB=OC$ nên tam giác $OBC$ cân

Do đó đường cao $OH$ đồng thời là trung tuyến hay $H$ là trung điểm $BC$

$\Rightarrow BH=4$ (cm)

Do $BA$ là tiếp tuyến $(O)\Rightarrow BA\perp BO$

Áp dụng HTL trong tam giác vuông với tam giác $ABO$:

$\frac{1}{AB^2}+\frac{1}{BO^2}=\frac{1}{BH^2}$

$\frac{1}{AB^2}+\frac{1}{5^2}=\frac{1}{4^2}$

$\Rightarrow AB=\frac{20}{3}$ (cm)

$AO=\sqrt{AB^2+BO^2}=\sqrt{(\frac{20}{3})^2+5^2}=\frac{25}{3}$ (cm)

b.

Vì $AO$ cắt $BC$ tại trung điểm $H$ của $BC$ và $AO\perp BC$ nên $AO$ là đường trung trực của $BC$

$\Rightarrow AC=AB$. Mà $OB=OC$ nên:

Do đó $\triangle ACO=\triangle ABO$ (c.c.c)

$\Rightarrow \widehat{ACO}=\widehat{ABO}=90^0$

$\Rightarrow AC\perp CO$ nên $AC$ là tiếp tuyến $(O)$

$AC=AB=\frac{20}{3}$ (cm)

AH
Akai Haruma
Giáo viên
30 tháng 9 2021

Hình vẽ: